These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 15794603)
1. Electrical docking of microtubules for kinesin-driven motility in nanostructures. van den Heuvel MG; Butcher CT; Lemay SG; Diez S; Dekker C Nano Lett; 2005 Feb; 5(2):235-41. PubMed ID: 15794603 [TBL] [Abstract][Full Text] [Related]
2. Nanomechanical model of microtubule translocation in the presence of electric fields. Kim T; Kao MT; Hasselbrink EF; Meyhöfer E Biophys J; 2008 May; 94(10):3880-92. PubMed ID: 18234823 [TBL] [Abstract][Full Text] [Related]
3. Microscale transport and sorting by kinesin molecular motors. Jia L; Moorjani SG; Jackson TN; Hancock WO Biomed Microdevices; 2004 Mar; 6(1):67-74. PubMed ID: 15307447 [TBL] [Abstract][Full Text] [Related]
4. Reversible switching of microtubule motility using thermoresponsive polymer surfaces. Ionov L; Stamm M; Diez S Nano Lett; 2006 Sep; 6(9):1982-7. PubMed ID: 16968012 [TBL] [Abstract][Full Text] [Related]
5. Directing transport of CoFe2O4-functionalized microtubules with magnetic fields. Hutchins BM; Platt M; Hancock WO; Williams ME Small; 2007 Jan; 3(1):126-31. PubMed ID: 17294483 [No Abstract] [Full Text] [Related]
6. Dispersion in active transport by kinesin-powered molecular shuttles. Nitta T; Hess H Nano Lett; 2005 Jul; 5(7):1337-42. PubMed ID: 16178234 [TBL] [Abstract][Full Text] [Related]
7. Selective loading of kinesin-powered molecular shuttles with protein cargo and its application to biosensing. Ramachandran S; Ernst KH; Bachand GD; Vogel V; Hess H Small; 2006 Mar; 2(3):330-4. PubMed ID: 17193044 [No Abstract] [Full Text] [Related]
8. Movement of polymer microcarriers using a biomolecular motor. Song W; Möhwald H; Li J Biomaterials; 2010 Feb; 31(6):1287-92. PubMed ID: 19879648 [TBL] [Abstract][Full Text] [Related]
9. Nanoscale patterning of kinesin motor proteins and its role in guiding microtubule motility. Verma V; Hancock WO; Catchmark JM Biomed Microdevices; 2009 Apr; 11(2):313-22. PubMed ID: 18989786 [TBL] [Abstract][Full Text] [Related]
13. A nano-needle/microtubule composite gliding on a kinesin-coated surface for target molecule transport. Tarhan MC; Yokokawa R; Bottier C; Collard D; Fujita H Lab Chip; 2010 Jan; 10(1):86-91. PubMed ID: 20024055 [TBL] [Abstract][Full Text] [Related]
14. Simultaneous and bidirectional transport of kinesin-coated microspheres and dynein-coated microspheres on polarity-oriented microtubules. Yokokawa R; Tarhan MC; Kon T; Fujita H Biotechnol Bioeng; 2008 Sep; 101(1):1-8. PubMed ID: 18646216 [TBL] [Abstract][Full Text] [Related]
16. Biased binding of single molecules and continuous movement of multiple molecules of truncated single-headed kinesin. Kamei T; Kakuta S; Higuchi H Biophys J; 2005 Mar; 88(3):2068-77. PubMed ID: 15626711 [TBL] [Abstract][Full Text] [Related]
18. Molecular sorting by electrical steering of microtubules in kinesin-coated channels. van den Heuvel MG; de Graaff MP; Dekker C Science; 2006 May; 312(5775):910-4. PubMed ID: 16690866 [TBL] [Abstract][Full Text] [Related]
19. Microtubule transport, concentration and alignment in enclosed microfluidic channels. Huang YM; Uppalapati M; Hancock WO; Jackson TN Biomed Microdevices; 2007 Apr; 9(2):175-84. PubMed ID: 17195111 [TBL] [Abstract][Full Text] [Related]
20. Efficient designs for powering microscale devices with nanoscale biomolecular motors. Lin CT; Kao MT; Kurabayashi K; Meyhöfer E Small; 2006 Feb; 2(2):281-7. PubMed ID: 17193036 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]