BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 15794648)

  • 1. Structural analysis of threonine 342 mutants of soybean beta-amylase: role of a conformational change of the inner loop in the catalytic mechanism.
    Kang YN; Tanabe A; Adachi M; Utsumi S; Mikami B
    Biochemistry; 2005 Apr; 44(13):5106-16. PubMed ID: 15794648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The roles of Glu186 and Glu380 in the catalytic reaction of soybean beta-amylase.
    Kang YN; Adachi M; Utsumi S; Mikami B
    J Mol Biol; 2004 Jun; 339(5):1129-40. PubMed ID: 15178253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering of the pH optimum of Bacillus cereus beta-amylase: conversion of the pH optimum from a bacterial type to a higher-plant type.
    Hirata A; Adachi M; Utsumi S; Mikami B
    Biochemistry; 2004 Oct; 43(39):12523-31. PubMed ID: 15449941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of a catalytic site mutant of beta-amylase from Bacillus cereus var. mycoides cocrystallized with maltopentaose.
    Miyake H; Kurisu G; Kusunoki M; Nishimura S; Kitamura S; Nitta Y
    Biochemistry; 2003 May; 42(19):5574-81. PubMed ID: 12741813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structures of soybean beta-amylase reacted with beta-maltose and maltal: active site components and their apparent roles in catalysis.
    Mikami B; Degano M; Hehre EJ; Sacchettini JC
    Biochemistry; 1994 Jun; 33(25):7779-87. PubMed ID: 8011643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of raw starch-digesting Bacillus cereus beta-amylase complexed with maltose.
    Mikami B; Adachi M; Kage T; Sarikaya E; Nanmori T; Shinke R; Utsumi S
    Biochemistry; 1999 Jun; 38(22):7050-61. PubMed ID: 10353816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The crystal structure of the sevenfold mutant of barley beta-amylase with increased thermostability at 2.5 A resolution.
    Mikami B; Yoon HJ; Yoshigi N
    J Mol Biol; 1999 Jan; 285(3):1235-43. PubMed ID: 9918723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into the structural basis of substrate recognition by histidinol-phosphate aminotransferase from Corynebacterium glutamicum.
    Marienhagen J; Sandalova T; Sahm H; Eggeling L; Schneider G
    Acta Crystallogr D Biol Crystallogr; 2008 Jun; 64(Pt 6):675-85. PubMed ID: 18560156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of a catalytic-site mutant alpha-amylase from Bacillus subtilis complexed with maltopentaose.
    Fujimoto Z; Takase K; Doui N; Momma M; Matsumoto T; Mizuno H
    J Mol Biol; 1998 Mar; 277(2):393-407. PubMed ID: 9514750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystallization, molecular replacement solution, and refinement of tetrameric beta-amylase from sweet potato.
    Cheong CG; Eom SH; Chang C; Shin DH; Song HK; Min K; Moon JH; Kim KK; Hwang KY; Suh SW
    Proteins; 1995 Feb; 21(2):105-17. PubMed ID: 7777485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic role for arginine 188 in the C-C hydrolase catalytic mechanism for Escherichia coli MhpC and Burkholderia xenovorans LB400 BphD.
    Li C; Li JJ; Montgomery MG; Wood SP; Bugg TD
    Biochemistry; 2006 Oct; 45(41):12470-9. PubMed ID: 17029402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and enzymatic analysis of soybean beta-amylase mutants with increased pH optimum.
    Hirata A; Adachi M; Sekine A; Kang YN; Utsumi S; Mikami B
    J Biol Chem; 2004 Feb; 279(8):7287-95. PubMed ID: 14638688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ser-796 of β-galactosidase (Escherichia coli) plays a key role in maintaining a balance between the opened and closed conformations of the catalytically important active site loop.
    Jancewicz LJ; Wheatley RW; Sutendra G; Lee M; Fraser ME; Huber RE
    Arch Biochem Biophys; 2012 Jan; 517(2):111-22. PubMed ID: 22155115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic and structural analysis of enzyme sliding on a substrate: multiple attack in beta-amylase.
    Ishikawa K; Nakatani H; Katsuya Y; Fukazawa C
    Biochemistry; 2007 Jan; 46(3):792-8. PubMed ID: 17223700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of recombinant soybean leghemoglobin a and apolar distal histidine mutants.
    Hargrove MS; Barry JK; Brucker EA; Berry MB; Phillips GN; Olson JS; Arredondo-Peter R; Dean JM; Klucas RV; Sarath G
    J Mol Biol; 1997 Mar; 266(5):1032-42. PubMed ID: 9086279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maltal binding mechanism and a role of the mobile loop of soybean beta-amylase.
    Kunikata T; Nishimura S; Nitta Y
    Biosci Biotechnol Biochem; 1996 Jul; 60(7):1104-8. PubMed ID: 8782404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional analysis of Glu380 and Leu383 of soybean beta-amylase. A proposed action mechanism.
    Totsuka A; Fukazawa C
    Eur J Biochem; 1996 Sep; 240(3):655-9. PubMed ID: 8856067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional and structural changes due to a serine to alanine mutation in the active-site flap of enolase.
    Poyner RR; Larsen TM; Wong SW; Reed GH
    Arch Biochem Biophys; 2002 May; 401(2):155-63. PubMed ID: 12054465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roles of individual enzyme-substrate interactions by alpha-1,3-galactosyltransferase in catalysis and specificity.
    Zhang Y; Swaminathan GJ; Deshpande A; Boix E; Natesh R; Xie Z; Acharya KR; Brew K
    Biochemistry; 2003 Nov; 42(46):13512-21. PubMed ID: 14621997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The thiolase reaction mechanism: the importance of Asn316 and His348 for stabilizing the enolate intermediate of the Claisen condensation.
    Meriläinen G; Poikela V; Kursula P; Wierenga RK
    Biochemistry; 2009 Nov; 48(46):11011-25. PubMed ID: 19842716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.