BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

427 related articles for article (PubMed ID: 15794653)

  • 1. Metal-binding characteristics of the amino-terminal domain of ZntA: binding of lead is different compared to cadmium and zinc.
    Liu J; Stemmler AJ; Fatima J; Mitra B
    Biochemistry; 2005 Apr; 44(13):5159-67. PubMed ID: 15794653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic analysis of metal binding to the amino-terminal domain of ZntA by monitoring metal-thiolate charge-transfer complexes.
    Dutta SJ; Liu J; Mitra B
    Biochemistry; 2005 Nov; 44(43):14268-74. PubMed ID: 16245943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The cysteine-rich amino-terminal domain of ZntA, a Pb(II)/Zn(II)/Cd(II)-translocating ATPase from Escherichia coli, is not essential for its function.
    Mitra B; Sharma R
    Biochemistry; 2001 Jun; 40(25):7694-9. PubMed ID: 11412123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal-binding affinity of the transmembrane site in ZntA: implications for metal selectivity.
    Liu J; Dutta SJ; Stemmler AJ; Mitra B
    Biochemistry; 2006 Jan; 45(3):763-72. PubMed ID: 16411752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A zinc(II)/lead(II)/cadmium(II)-inducible operon from the Cyanobacterium anabaena is regulated by AztR, an alpha3N ArsR/SmtB metalloregulator.
    Liu T; Golden JW; Giedroc DP
    Biochemistry; 2005 Jun; 44(24):8673-83. PubMed ID: 15952774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conserved aspartic acid 714 in transmembrane segment 8 of the ZntA subgroup of P1B-type ATPases is a metal-binding residue.
    Dutta SJ; Liu J; Hou Z; Mitra B
    Biochemistry; 2006 May; 45(18):5923-31. PubMed ID: 16669635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal binding affinities of Arabidopsis zinc and copper transporters: selectivities match the relative, but not the absolute, affinities of their amino-terminal domains.
    Zimmermann M; Clarke O; Gulbis JM; Keizer DW; Jarvis RS; Cobbett CS; Hinds MG; Xiao Z; Wedd AG
    Biochemistry; 2009 Dec; 48(49):11640-54. PubMed ID: 19883117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conservative and nonconservative mutations of the transmembrane CPC motif in ZntA: effect on metal selectivity and activity.
    Dutta SJ; Liu J; Stemmler AJ; Mitra B
    Biochemistry; 2007 Mar; 46(12):3692-703. PubMed ID: 17326661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The metal specificity and selectivity of ZntA from Escherichia coli using the acylphosphate intermediate.
    Hou Z; Mitra B
    J Biol Chem; 2003 Aug; 278(31):28455-61. PubMed ID: 12746428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elucidation of primary (alpha(3)N) and vestigial (alpha(5)) heavy metal-binding sites in Staphylococcus aureus pI258 CadC: evolutionary implications for metal ion selectivity of ArsR/SmtB metal sensor proteins.
    Busenlehner LS; Weng TC; Penner-Hahn JE; Giedroc DP
    J Mol Biol; 2002 Jun; 319(3):685-701. PubMed ID: 12054863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The nucleotide-binding domain of the Zn2+-transporting P-type ATPase from Escherichia coli carries a glycine motif that may be involved in binding of ATP.
    Okkeri J; Laakkonen L; Haltia T
    Biochem J; 2004 Jan; 377(Pt 1):95-105. PubMed ID: 14510639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional analysis of chimeric proteins of the Wilson Cu(I)-ATPase (ATP7B) and ZntA, a Pb(II)/Zn(II)/Cd(II)-ATPase from Escherichia coli.
    Hou ZJ; Narindrasorasak S; Bhushan B; Sarkar B; Mitra B
    J Biol Chem; 2001 Nov; 276(44):40858-63. PubMed ID: 11527979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of ZntA, a zinc-transporting P1-type ATPase, is specifically regulated by zinc and cadmium.
    Noll M; Lutsenko S
    IUBMB Life; 2000 Apr; 49(4):297-302. PubMed ID: 10995032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new zinc-protein coordination site in intracellular metal trafficking: solution structure of the Apo and Zn(II) forms of ZntA(46-118).
    Banci L; Bertini I; Ciofi-Baffoni S; Finney LA; Outten CE; O'Halloran TV
    J Mol Biol; 2002 Nov; 323(5):883-97. PubMed ID: 12417201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of the Zn(II) site in the copper-responsive yeast transcription factor, AMT1: a conserved Zn module.
    Farrell RA; Thorvaldsen JL; Winge DR
    Biochemistry; 1996 Feb; 35(5):1571-80. PubMed ID: 8634288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The ATP hydrolytic activity of purified ZntA, a Pb(II)/Cd(II)/Zn(II)-translocating ATPase from Escherichia coli.
    Sharma R; Rensing C; Rosen BP; Mitra B
    J Biol Chem; 2000 Feb; 275(6):3873-8. PubMed ID: 10660539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequence of ligand binding and structure change in the diphtheria toxin repressor upon activation by divalent transition metals.
    Rangachari V; Marin V; Bienkiewicz EA; Semavina M; Guerrero L; Love JF; Murphy JR; Logan TM
    Biochemistry; 2005 Apr; 44(15):5672-82. PubMed ID: 15823025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel Zn2+ coordination by the regulatory N-terminus metal binding domain of Arabidopsis thaliana Zn(2+)-ATPase HMA2.
    Eren E; González-Guerrero M; Kaufman BM; Argüello JM
    Biochemistry; 2007 Jul; 46(26):7754-64. PubMed ID: 17550234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Zn(II) binding motifs of E. coli DNA topoisomerase I is part of a high-affinity DNA binding domain.
    Ahumada A; Tse-Dinh YC
    Biochem Biophys Res Commun; 1998 Oct; 251(2):509-14. PubMed ID: 9792804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal- and DNA-binding properties and mutational analysis of the transcription activating factor, B, of coliphage 186: a prokaryotic C4 zinc-finger protein.
    Pountney DL; Tiwari RP; Egan JB
    Protein Sci; 1997 Apr; 6(4):892-902. PubMed ID: 9098899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.