BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 15794994)

  • 1. 'Looping'-an exploration mechanism in a dark open field.
    Zadicario P; Avni R; Zadicario E; Eilam D
    Behav Brain Res; 2005 Apr; 159(1):27-36. PubMed ID: 15794994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploration in a dark open field: a shift from directional to positional progression and a proposed model of acquiring spatial information.
    Avni R; Zadicario P; Eilam D
    Behav Brain Res; 2006 Aug; 171(2):313-23. PubMed ID: 16712970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the border: perimeter patrolling as a transitional exploratory phase in a diurnal rodent, the fat sand rat (Psammomys obesus).
    Avni R; Eilam D
    Anim Cogn; 2008 Apr; 11(2):311-8. PubMed ID: 17972119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The impact of landmark properties in shaping exploration and navigation.
    Yaski O; Eilam D
    Anim Cogn; 2007 Oct; 10(4):415-28. PubMed ID: 17318624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Is it safe? Voles in an unfamiliar dark open-field divert from optimal security by abandoning a familiar shelter and not visiting a central start point.
    Eilam D
    Behav Brain Res; 2010 Jan; 206(1):88-92. PubMed ID: 19744526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How do global and local geometries shape exploratory behavior in rats?
    Yaski O; Eilam D
    Behav Brain Res; 2008 Mar; 187(2):334-42. PubMed ID: 17988750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Medial septum lesions disrupt exploratory trip organization: evidence for septohippocampal involvement in dead reckoning.
    Martin MM; Horn KL; Kusman KJ; Wallace DG
    Physiol Behav; 2007 Feb; 90(2-3):412-24. PubMed ID: 17126862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fimbria-fornix lesions disrupt the dead reckoning (homing) component of exploratory behavior in mice.
    Gorny JH; Gorny B; Wallace DG; Whishaw IQ
    Learn Mem; 2002; 9(6):387-94. PubMed ID: 12464698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The topography of three-dimensional exploration: a new quantification of vertical and horizontal exploration, postural support, and exploratory bouts in the cylinder test.
    Gharbawie OA; Whishaw PA; Whishaw IQ
    Behav Brain Res; 2004 May; 151(1-2):125-35. PubMed ID: 15084428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes to open field surfaces typically used to elicit hippocampal remapping elicit graded exploratory responses.
    Wells CE; Krikke B; Saunders J; Whittington A; Lever C
    Behav Brain Res; 2009 Jan; 197(1):234-8. PubMed ID: 18789358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Voles scale locomotion to the size of the open-field by adjusting the distance between stops: a possible link to path integration.
    Eilam D; Dank M; Maurer R
    Behav Brain Res; 2003 Apr; 141(1):73-81. PubMed ID: 12672561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The dynamic process of cognitive mapping in the absence of visual cues: human data compared with animal studies.
    Yaski O; Portugali J; Eilam D
    J Exp Biol; 2009 Aug; 212(Pt 16):2619-26. PubMed ID: 19648407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mice with vestibular deficiency display hyperactivity, disorientation, and signs of anxiety.
    Avni R; Elkan T; Dror AA; Shefer S; Eilam D; Avraham KB; Mintz M
    Behav Brain Res; 2009 Sep; 202(2):210-7. PubMed ID: 19463703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Animal navigation: the difficulty of moving in a straight line.
    Cheung A; Zhang S; Stricker C; Srinivasan MV
    Biol Cybern; 2007 Jul; 97(1):47-61. PubMed ID: 17520273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How do rodents explore a three-dimensional environment? Habitat-dependent and direction-dependent differences.
    Gielman S; Hagbi Z; Dulitzky Y; Blumenfeld-Lieberthal E; Eilam D
    Behav Processes; 2020 Sep; 178():104183. PubMed ID: 32561235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The development of spatial capacity in piloting and dead reckoning by infant rats: use of the huddle as a home base for spatial navigation.
    Loewen I; Wallace DG; Whishaw IQ
    Dev Psychobiol; 2005 May; 46(4):350-61. PubMed ID: 15832318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Of mice and men: building blocks in cognitive mapping.
    Eilam D
    Neurosci Biobehav Rev; 2014 Nov; 47():393-409. PubMed ID: 25265515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finding home: the final step of the pigeons' homing process studied with a GPS data logger.
    Gagliardo A; Ioalè P; Savini M; Lipp HP; Dell'Omo G
    J Exp Biol; 2007 Apr; 210(Pt 7):1132-8. PubMed ID: 17371912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Locomotor activity in common spiny mice (Acomys cahirinuse): the effect of light and environmental complexity.
    Eilam D
    BMC Ecol; 2004 Nov; 4(1):16. PubMed ID: 15537426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Traveling in clutter: navigation in the Central Australian desert ant Melophorus bagoti.
    Cheng K; Narendra A; Sommer S; Wehner R
    Behav Processes; 2009 Mar; 80(3):261-8. PubMed ID: 19049857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.