These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 15795034)
1. Modelling 137Cs uptake in plants from undisturbed soil monoliths. Waegeneers N; Smolders E; Merckx R J Environ Radioact; 2005; 81(2-3):187-99. PubMed ID: 15795034 [TBL] [Abstract][Full Text] [Related]
2. Predicting the transfer of 137Cs to rice plants by a dynamic compartment model with a consideration of the soil properties. Keum DK; Lee H; Kang HS; Jun I; Choi YH; Lee CW J Environ Radioact; 2007; 92(1):1-15. PubMed ID: 17081663 [TBL] [Abstract][Full Text] [Related]
3. Laboratory experiments to predict changes in radiocaesium root uptake after flooding events. Camps M; Hillier S; Vidal M; Rauret G J Environ Radioact; 2003; 67(3):247-59. PubMed ID: 12691722 [TBL] [Abstract][Full Text] [Related]
4. Arbuscular mycorrhizal fungi mediated uptake of 137Cs in leek and ryegrass. Rosén K; Weiliang Z; Mårtensson A Sci Total Environ; 2005 Feb; 338(3):283-90. PubMed ID: 15713335 [TBL] [Abstract][Full Text] [Related]
5. Processes, dynamics and modelling of radiocaesium cycling in a chronosequence of Chernobyl-contaminated Scots pine (Pinus sylvestris L.) plantations. Goor F; Thiry Y Sci Total Environ; 2004 Jun; 325(1-3):163-80. PubMed ID: 15144787 [TBL] [Abstract][Full Text] [Related]
6. Radiocaesium soil-to-wood transfer in commercial willow short rotation coppice on contaminated farm land. Gommers A; Gäfvert T; Smolders E; Merckx R; Vandenhove H J Environ Radioact; 2005; 78(3):267-87. PubMed ID: 15511563 [TBL] [Abstract][Full Text] [Related]
7. Vertical migration of 60Co, 137Cs and 226Ra in agricultural soils as observed in lysimeters under crop rotation. Shinonaga T; Schimmack W; Gerzabek MH J Environ Radioact; 2005; 79(2):93-106. PubMed ID: 15603900 [TBL] [Abstract][Full Text] [Related]
8. Can we predict uranium bioavailability based on soil parameters? Part 2: soil solution uranium concentration is not a good bioavailability index. Vandenhove H; Van Hees M; Wannijn J; Wouters K; Wang L Environ Pollut; 2007 Jan; 145(2):577-86. PubMed ID: 16781804 [TBL] [Abstract][Full Text] [Related]
9. The influence of season and leaf age on concentrations of radiocaesium (137Cs), stable caesium (133Cs) and potassium in Agrostis capillaris. Salt CA; Kay JW; Jarvis KE Environ Pollut; 2004 Aug; 130(3):359-69. PubMed ID: 15182969 [TBL] [Abstract][Full Text] [Related]
10. Distribution and ratios of 137Cs and K in control and K-treated coconut trees at Bikini Island where nuclear test fallout occurred: effects and implications. Robison WL; Brown PH; Stone EL; Hamilton TF; Conrado CL; Kehl S J Environ Radioact; 2009 Jan; 100(1):76-83. PubMed ID: 19064306 [TBL] [Abstract][Full Text] [Related]
11. [Analysis of factors determining the biological availability of 137Cs in forest ecosystem soils]. Fesenko SV; Sanzharova NI; Spiridonov SI; Sukhova NV; Avila R; Klein D Radiats Biol Radioecol; 2002; 42(4):448-56. PubMed ID: 12395784 [TBL] [Abstract][Full Text] [Related]
12. The effective and environmental half-life of 137Cs at Coral Islands at the former US nuclear test site. Robison WL; Conrado CL; Bogen KT; Stoker AC J Environ Radioact; 2003; 69(3):207-23. PubMed ID: 12832159 [TBL] [Abstract][Full Text] [Related]
13. Plant induced changes in concentrations of caesium, strontium and uranium in soil solution with reference to major ions and dissolved organic matter. Takeda A; Tsukada H; Takaku Y; Akata N; Hisamatsu S J Environ Radioact; 2008 Jun; 99(6):900-11. PubMed ID: 18164108 [TBL] [Abstract][Full Text] [Related]
14. Effect of arbuscular mycorrhizal (AM) fungi on 137Cs uptake by plants grown on different soils. Vinichuk M; Mårtensson A; Ericsson T; Rosén K J Environ Radioact; 2013 Jan; 115():151-6. PubMed ID: 22939950 [TBL] [Abstract][Full Text] [Related]
15. On the influence of soil properties on the transfer of 137Cs from two soils (Chromic Luvisol and Eutric Fluvisol) to wheat and cabbage. Djingova R; Kovacheva P; Todorov B; Zlateva B; Kuleff I J Environ Radioact; 2005; 82(1):63-79. PubMed ID: 15829337 [TBL] [Abstract][Full Text] [Related]
16. Predicting radium availability and uptake from soil properties. Vandenhove H; Van Hees M Chemosphere; 2007 Sep; 69(4):664-74. PubMed ID: 17434569 [TBL] [Abstract][Full Text] [Related]
17. Soil redistribution model for undisturbed and cultivated sites based on Chernobyl-derived cesium-137 fallout. Hrachowitz M; Maringer FJ; Steineder C; Gerzabek MH J Environ Qual; 2005; 34(4):1302-10. PubMed ID: 15998852 [TBL] [Abstract][Full Text] [Related]
18. Distribution and uptake of 137Cs in relation to alkali metals in a perhumid montane forest ecosystem. Chao JH; Chiu CY; Lee HP Appl Radiat Isot; 2008 Oct; 66(10):1287-94. PubMed ID: 18417349 [TBL] [Abstract][Full Text] [Related]
19. Plant uptake of radiocaesium from artificially contaminated soil monoliths covering major European soil types. Waegeneers N; Sauras-Yera T; Thiry Y; Vallejo VR; Smolders E; Madoz-Escande C; Bréchignac F J Environ Radioact; 2009 Jun; 100(6):439-44. PubMed ID: 19375202 [TBL] [Abstract][Full Text] [Related]
20. Freundlich and dual Langmuir isotherm models for predicting 137Cs binding on Savannah River Site soils. Goto M; Rosson R; Wampler JM; Elliott WC; Serkiz S; Kahn B Health Phys; 2008 Jan; 94(1):18-32. PubMed ID: 18091148 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]