BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

447 related articles for article (PubMed ID: 15795135)

  • 1. Sustained neural activity associated with cognitive control during temporally extended decision making.
    Yarkoni T; Gray JR; Chrastil ER; Barch DM; Green L; Braver TS
    Brain Res Cogn Brain Res; 2005 Apr; 23(1):71-84. PubMed ID: 15795135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissociating state and item components of recognition memory using fMRI.
    Donaldson DI; Petersen SE; Ollinger JM; Buckner RL
    Neuroimage; 2001 Jan; 13(1):129-42. PubMed ID: 11133316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The neural correlates and functional integration of cognitive control in a Stroop task.
    Egner T; Hirsch J
    Neuroimage; 2005 Jan; 24(2):539-47. PubMed ID: 15627596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of sustained and transient activity in children and adults using a mixed blocked/event-related fMRI design.
    Wenger KK; Visscher KM; Miezin FM; Petersen SE; Schlaggar BL
    Neuroimage; 2004 Jun; 22(2):975-85. PubMed ID: 15193629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temporal activation patterns of lateralized cognitive and task control processes in the human brain.
    Gobbelé R; Lamberty K; Stephan KE; Stegelmeyer U; Buchner H; Marshall JC; Fink GR; Waberski TD
    Brain Res; 2008 Apr; 1205():81-90. PubMed ID: 18353286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of varying the experimental design of a cognitive control paradigm on behavioral and functional imaging outcome measures.
    Goghari VM; MacDonald AW
    J Cogn Neurosci; 2008 Jan; 20(1):20-35. PubMed ID: 17919074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cognitive control mechanisms revealed by ERP and fMRI: evidence from repeated task-switching.
    Swainson R; Cunnington R; Jackson GM; Rorden C; Peters AM; Morris PG; Jackson SR
    J Cogn Neurosci; 2003 Aug; 15(6):785-99. PubMed ID: 14511532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Who comes first? The role of the prefrontal and parietal cortex in cognitive control.
    Brass M; Ullsperger M; Knoesche TR; von Cramon DY; Phillips NA
    J Cogn Neurosci; 2005 Sep; 17(9):1367-75. PubMed ID: 16197690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time perception: manipulation of task difficulty dissociates clock functions from other cognitive demands.
    Livesey AC; Wall MB; Smith AT
    Neuropsychologia; 2007 Jan; 45(2):321-31. PubMed ID: 16934301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural correlates of traditional Chinese medicine induced advantageous risk-taking decision making.
    Lee TM; Guo LG; Shi HZ; Li YZ; Luo YJ; Sung CY; Chan CC; Lee TM
    Brain Cogn; 2009 Dec; 71(3):354-61. PubMed ID: 19679384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuroimaging of marijuana smokers during inhibitory processing: a pilot investigation.
    Gruber SA; Yurgelun-Todd DA
    Brain Res Cogn Brain Res; 2005 Apr; 23(1):107-18. PubMed ID: 15795138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural representation of interval encoding and decision making.
    Harrington DL; Boyd LA; Mayer AR; Sheltraw DM; Lee RR; Huang M; Rao SM
    Brain Res Cogn Brain Res; 2004 Oct; 21(2):193-205. PubMed ID: 15464351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-trial coupling of EEG and fMRI reveals the involvement of early anterior cingulate cortex activation in effortful decision making.
    Mulert C; Seifert C; Leicht G; Kirsch V; Ertl M; Karch S; Moosmann M; Lutz J; Möller HJ; Hegerl U; Pogarell O; Jäger L
    Neuroimage; 2008 Aug; 42(1):158-68. PubMed ID: 18547820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human brain language processing areas identified by functional magnetic resonance imaging using a lexical decision task.
    Calandra-Buonaura G; Basso G; Gorno-Tempini ML; Serafini M; Pagnoni G; Baraldi P; Porro CA; Nichelli P
    Funct Neurol; 2002; 17(4):183-91. PubMed ID: 12675261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective activation of the superior frontal gyrus in task-switching: an event-related fNIRS study.
    Cutini S; Scatturin P; Menon E; Bisiacchi PS; Gamberini L; Zorzi M; Dell'Acqua R
    Neuroimage; 2008 Aug; 42(2):945-55. PubMed ID: 18586525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pain enhances functional connectivity of a brain network evoked by performance of a cognitive task.
    Seminowicz DA; Davis KD
    J Neurophysiol; 2007 May; 97(5):3651-9. PubMed ID: 17314240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural networks of response shifting: influence of task speed and stimulus material.
    Loose R; Kaufmann C; Tucha O; Auer DP; Lange KW
    Brain Res; 2006 May; 1090(1):146-55. PubMed ID: 16643867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracerebral ERD/ERS in voluntary movement and in cognitive visuomotor task.
    Rektor I; Sochůrková D; Bocková M
    Prog Brain Res; 2006; 159():311-30. PubMed ID: 17071240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aging and decision making under uncertainty: behavioral and neural evidence for the preservation of decision making in the absence of learning in old age.
    Hosseini SM; Rostami M; Yomogida Y; Takahashi M; Tsukiura T; Kawashima R
    Neuroimage; 2010 Oct; 52(4):1514-20. PubMed ID: 20472072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional specializations in lateral prefrontal cortex associated with the integration and segregation of information in working memory.
    De Pisapia N; Slomski JA; Braver TS
    Cereb Cortex; 2007 May; 17(5):993-1006. PubMed ID: 16769743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.