These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

490 related articles for article (PubMed ID: 15795229)

  • 21. Subcellular localization of multiple PREP2 isoforms is regulated by actin, tubulin, and nuclear export.
    Haller K; Rambaldi I; Daniels E; Featherstone M
    J Biol Chem; 2004 Nov; 279(47):49384-94. PubMed ID: 15339927
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The ADP-ribosylating mosquitocidal toxin from Bacillus sphaericus: proteolytic activation, enzyme activity, and cytotoxic effects.
    Schirmer J; Just I; Aktories K
    J Biol Chem; 2002 Apr; 277(14):11941-8. PubMed ID: 11812773
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An enzymatic activity in the yeast Sir2 protein that is essential for gene silencing.
    Tanny JC; Dowd GJ; Huang J; Hilz H; Moazed D
    Cell; 1999 Dec; 99(7):735-45. PubMed ID: 10619427
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Desnutrin, an adipocyte gene encoding a novel patatin domain-containing protein, is induced by fasting and glucocorticoids: ectopic expression of desnutrin increases triglyceride hydrolysis.
    Villena JA; Roy S; Sarkadi-Nagy E; Kim KH; Sul HS
    J Biol Chem; 2004 Nov; 279(45):47066-75. PubMed ID: 15337759
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanism of nicotinamide inhibition and transglycosidation by Sir2 histone/protein deacetylases.
    Jackson MD; Schmidt MT; Oppenheimer NJ; Denu JM
    J Biol Chem; 2003 Dec; 278(51):50985-98. PubMed ID: 14522996
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure and function of eukaryotic mono-ADP-ribosyltransferases.
    Okazaki IJ; Moss J
    Rev Physiol Biochem Pharmacol; 1996; 129():51-104. PubMed ID: 8898563
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Side chain specificity of ADP-ribosylation by a sirtuin.
    Fahie K; Hu P; Swatkoski S; Cotter RJ; Zhang Y; Wolberger C
    FEBS J; 2009 Dec; 276(23):7159-76. PubMed ID: 19895577
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of mammalian ADP-ribosylation cycles.
    Okazaki IJ; Zolkiewska A; Takada T; Moss J
    Biochimie; 1995; 77(5):319-25. PubMed ID: 8527484
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Auto ADP-ribosylation of NarE, a Neisseria meningitidis ADP-ribosyltransferase, regulates its catalytic activities.
    Picchianti M; Del Vecchio M; Di Marcello F; Biagini M; Veggi D; Norais N; Rappuoli R; Pizza M; Balducci E
    FASEB J; 2013 Dec; 27(12):4723-30. PubMed ID: 23964075
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mono-ADP-Ribosylation Catalyzed by Arginine-Specific ADP-Ribosyltransferases.
    Stevens LA; Moss J
    Methods Mol Biol; 2018; 1813():149-165. PubMed ID: 30097866
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Plasmodium falciparum Sir2: an unusual sirtuin with dual histone deacetylase and ADP-ribosyltransferase activity.
    Merrick CJ; Duraisingh MT
    Eukaryot Cell; 2007 Nov; 6(11):2081-91. PubMed ID: 17827348
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells.
    Revollo JR; Grimm AA; Imai S
    J Biol Chem; 2004 Dec; 279(49):50754-63. PubMed ID: 15381699
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Substrate specificity and kinetic mechanism of the Sir2 family of NAD+-dependent histone/protein deacetylases.
    Borra MT; Langer MR; Slama JT; Denu JM
    Biochemistry; 2004 Aug; 43(30):9877-87. PubMed ID: 15274642
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Acetylation-dependent ADP-ribosylation by Trypanosoma brucei Sir2.
    Kowieski TM; Lee S; Denu JM
    J Biol Chem; 2008 Feb; 283(9):5317-26. PubMed ID: 18165239
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Players in ADP-ribosylation: Readers and Erasers.
    Verheugd P; Bütepage M; Eckei L; Lüscher B
    Curr Protein Pept Sci; 2016; 17(7):654-667. PubMed ID: 27090904
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessment of Intracellular Auto-Modification Levels of ARTD10 Using Mono-ADP-Ribose-Specific Macrodomains 2 and 3 of Murine Artd8.
    Bütepage M; Krieg S; Eckei L; Li J; Rossetti G; Verheugd P; Lüscher B
    Methods Mol Biol; 2018; 1813():41-63. PubMed ID: 30097860
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of novel cytosolic phospholipase A(2)s, murine cPLA(2){delta}, {epsilon}, and {zeta}, which form a gene cluster with cPLA(2){beta}.
    Ohto T; Uozumi N; Hirabayashi T; Shimizu T
    J Biol Chem; 2005 Jul; 280(26):24576-83. PubMed ID: 15866882
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sir2 protein deacetylases: evidence for chemical intermediates and functions of a conserved histidine.
    Smith BC; Denu JM
    Biochemistry; 2006 Jan; 45(1):272-82. PubMed ID: 16388603
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Substrate-assisted catalysis by PARP10 limits its activity to mono-ADP-ribosylation.
    Kleine H; Poreba E; Lesniewicz K; Hassa PO; Hottiger MO; Litchfield DW; Shilton BH; Lüscher B
    Mol Cell; 2008 Oct; 32(1):57-69. PubMed ID: 18851833
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of novel components of NAD-utilizing metabolic pathways and prediction of their biochemical functions.
    de Souza RF; Aravind L
    Mol Biosyst; 2012 Jun; 8(6):1661-77. PubMed ID: 22399070
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.