These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 15795376)

  • 1. Generalized Bienenstock-Cooper-Munro rule for spiking neurons that maximizes information transmission.
    Toyoizumi T; Pfister JP; Aihara K; Gerstner W
    Proc Natl Acad Sci U S A; 2005 Apr; 102(14):5239-44. PubMed ID: 15795376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A triplet spike-timing-dependent plasticity model generalizes the Bienenstock-Cooper-Munro rule to higher-order spatiotemporal correlations.
    Gjorgjieva J; Clopath C; Audet J; Pfister JP
    Proc Natl Acad Sci U S A; 2011 Nov; 108(48):19383-8. PubMed ID: 22080608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synaptic and temporal ensemble interpretation of spike-timing-dependent plasticity.
    Appleby PA; Elliott T
    Neural Comput; 2005 Nov; 17(11):2316-36. PubMed ID: 16156931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Triplets of spikes in a model of spike timing-dependent plasticity.
    Pfister JP; Gerstner W
    J Neurosci; 2006 Sep; 26(38):9673-82. PubMed ID: 16988038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Natural Firing Patterns Imply Low Sensitivity of Synaptic Plasticity to Spike Timing Compared with Firing Rate.
    Graupner M; Wallisch P; Ostojic S
    J Neurosci; 2016 Nov; 36(44):11238-11258. PubMed ID: 27807166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward a generalized Bienenstock-Cooper-Munro rule for spatiotemporal learning via triplet-STDP in memristive devices.
    Wang Z; Zeng T; Ren Y; Lin Y; Xu H; Zhao X; Liu Y; Ielmini D
    Nat Commun; 2020 Mar; 11(1):1510. PubMed ID: 32198368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimality model of unsupervised spike-timing-dependent plasticity: synaptic memory and weight distribution.
    Toyoizumi T; Pfister JP; Aihara K; Gerstner W
    Neural Comput; 2007 Mar; 19(3):639-71. PubMed ID: 17298228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Beyond spike timing: the role of nonlinear plasticity and unreliable synapses.
    Senn W
    Biol Cybern; 2002 Dec; 87(5-6):344-55. PubMed ID: 12461625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal spike-timing-dependent plasticity for precise action potential firing in supervised learning.
    Pfister JP; Toyoizumi T; Barber D; Gerstner W
    Neural Comput; 2006 Jun; 18(6):1318-48. PubMed ID: 16764506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spike-timing-dependent plasticity and relevant mutual information maximization.
    Chechik G
    Neural Comput; 2003 Jul; 15(7):1481-510. PubMed ID: 12816563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neurons tune to the earliest spikes through STDP.
    Guyonneau R; VanRullen R; Thorpe SJ
    Neural Comput; 2005 Apr; 17(4):859-79. PubMed ID: 15829092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. STDP rule endowed with the BCM sliding threshold accounts for hippocampal heterosynaptic plasticity.
    Benuskova L; Abraham WC
    J Comput Neurosci; 2007 Apr; 22(2):129-33. PubMed ID: 17053995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling synaptic plasticity in conjuction with the timing of pre- and postsynaptic action potentials.
    Kistler WM; van Hemmen JL
    Neural Comput; 2000 Feb; 12(2):385-405. PubMed ID: 10636948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. What can a neuron learn with spike-timing-dependent plasticity?
    Legenstein R; Naeger C; Maass W
    Neural Comput; 2005 Nov; 17(11):2337-82. PubMed ID: 16156932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A calcium-dependent plasticity rule for HCN channels maintains activity homeostasis and stable synaptic learning.
    Honnuraiah S; Narayanan R
    PLoS One; 2013; 8(2):e55590. PubMed ID: 23390543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. I. Input selectivity--strengthening correlated input pathways.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2009 Aug; 101(2):81-102. PubMed ID: 19536560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamical model of long-term synaptic plasticity.
    Abarbanel HD; Huerta R; Rabinovich MI
    Proc Natl Acad Sci U S A; 2002 Jul; 99(15):10132-7. PubMed ID: 12114531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predictable Fluctuations in Excitatory Synaptic Strength Due to Natural Variation in Presynaptic Firing Rate.
    Ren N; Wei G; Ghanbari A; Stevenson IH
    J Neurosci; 2022 Nov; 42(46):8608-8620. PubMed ID: 36171085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Representation of input structure in synaptic weights by spike-timing-dependent plasticity.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021912. PubMed ID: 20866842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Statistical structure of neural spiking under non-Poissonian or other non-white stimulation.
    Schwalger T; Droste F; Lindner B
    J Comput Neurosci; 2015 Aug; 39(1):29-51. PubMed ID: 25936628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.