These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 15795740)

  • 1. Photoreceptor axons play hide and seek.
    Morante J; Desplan C
    Nat Neurosci; 2005 Apr; 8(4):401-2. PubMed ID: 15795740
    [No Abstract]   [Full Text] [Related]  

  • 2. N-cadherin regulates target specificity in the Drosophila visual system.
    Lee CH; Herman T; Clandinin TR; Lee R; Zipursky SL
    Neuron; 2001 May; 30(2):437-50. PubMed ID: 11395005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drosophila N-cadherin mediates an attractive interaction between photoreceptor axons and their targets.
    Prakash S; Caldwell JC; Eberl DF; Clandinin TR
    Nat Neurosci; 2005 Apr; 8(4):443-50. PubMed ID: 15735641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drosophila LAR regulates R1-R6 and R7 target specificity in the visual system.
    Clandinin TR; Lee CH; Herman T; Lee RC; Yang AY; Ovasapyan S; Zipursky SL
    Neuron; 2001 Oct; 32(2):237-48. PubMed ID: 11683994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The evolution and development of neural superposition.
    Agi E; Langen M; Altschuler SJ; Wu LF; Zimmermann T; Hiesinger PR
    J Neurogenet; 2014; 28(3-4):216-32. PubMed ID: 24912630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stop or go in the target zone.
    Kunes S
    Neuron; 1999 Apr; 22(4):639-40. PubMed ID: 10230780
    [No Abstract]   [Full Text] [Related]  

  • 7. Cell surface molecule, Klingon, mediates the refinement of synaptic specificity in the Drosophila visual system.
    Shimozono M; Osaka J; Kato Y; Araki T; Kawamura H; Takechi H; Hakeda-Suzuki S; Suzuki T
    Genes Cells; 2019 Jul; 24(7):496-510. PubMed ID: 31124270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cadherins in brain patterning and neural network formation.
    Takeichi M; Uemura T; Iwai Y; Uchida N; Inoue T; Tanaka T; Suzuki SC
    Cold Spring Harb Symp Quant Biol; 1997; 62():505-10. PubMed ID: 9598384
    [No Abstract]   [Full Text] [Related]  

  • 9. The mechanisms and molecules that connect photoreceptor axons to their targets in Drosophila.
    Mast JD; Prakash S; Chen PL; Clandinin TR
    Semin Cell Dev Biol; 2006 Feb; 17(1):42-9. PubMed ID: 16337412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The transmembrane protein Golden goal regulates R8 photoreceptor axon-axon and axon-target interactions.
    Tomasi T; Hakeda-Suzuki S; Ohler S; Schleiffer A; Suzuki T
    Neuron; 2008 Mar; 57(5):691-704. PubMed ID: 18341990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activity-independent prespecification of synaptic partners in the visual map of Drosophila.
    Hiesinger PR; Zhai RG; Zhou Y; Koh TW; Mehta SQ; Schulze KL; Cao Y; Verstreken P; Clandinin TR; Fischbach KF; Meinertzhagen IA; Bellen HJ
    Curr Biol; 2006 Sep; 16(18):1835-43. PubMed ID: 16979562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential adhesion determines the organization of synaptic fascicles in the Drosophila visual system.
    Schwabe T; Borycz JA; Meinertzhagen IA; Clandinin TR
    Curr Biol; 2014 Jun; 24(12):1304-1313. PubMed ID: 24881879
    [TBL] [Abstract][Full Text] [Related]  

  • 13. De novo GMP synthesis is required for axon guidance in Drosophila.
    Long H; Cameron S; Yu L; Rao Y
    Genetics; 2006 Mar; 172(3):1633-42. PubMed ID: 16322525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The cadherin Flamingo mediates level-dependent interactions that guide photoreceptor target choice in Drosophila.
    Chen PL; Clandinin TR
    Neuron; 2008 Apr; 58(1):26-33. PubMed ID: 18400160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutations disrupting neuronal connectivity in the Drosophila visual system.
    Martin KA; Poeck B; Roth H; Ebens AJ; Ballard LC; Zipursky SL
    Neuron; 1995 Feb; 14(2):229-40. PubMed ID: 7857635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synaptic organization in the fly's optic lamina: few cells, many synapses and divergent microcircuits.
    Meinertzhagen IA; Sorra KE
    Prog Brain Res; 2001; 131():53-69. PubMed ID: 11420968
    [No Abstract]   [Full Text] [Related]  

  • 17. Axon guidance mechanisms and molecules: lessons from invertebrates.
    Araújo SJ; Tear G
    Nat Rev Neurosci; 2003 Nov; 4(11):910-22. PubMed ID: 14595402
    [No Abstract]   [Full Text] [Related]  

  • 18. Visual neuroscience: hypercomplex cells in the arthropod visual system.
    Gilbert C
    Curr Biol; 2007 Jun; 17(11):R412-4. PubMed ID: 17550766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. External and internal inputs affecting plasticity of dendrites and axons of the fly's neurons.
    Pyza E; Górska-Andrzejak J
    Acta Neurobiol Exp (Wars); 2008; 68(2):322-33. PubMed ID: 18511964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sign-conserving amacrine neurons in the fly's external plexiform layer.
    Douglass JK; Strausfeld NJ
    Vis Neurosci; 2005; 22(3):345-58. PubMed ID: 16079009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.