BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 15796070)

  • 21. Age-dependent changes in noradrenergic locus coeruleus system in wild-type and APP23 transgenic mice.
    Szot P; Van Dam D; White SS; Franklin A; Staufenbiel M; De Deyn PP
    Neurosci Lett; 2009 Sep; 463(1):93-7. PubMed ID: 19631722
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Age-dependent changes in projections from locus coeruleus to hippocampus dentate gyrus and frontal cortex.
    Ishida Y; Shirokawa T; Miyaishi O; Komatsu Y; Isobe K
    Eur J Neurosci; 2000 Apr; 12(4):1263-70. PubMed ID: 10762355
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Degeneration of the locus ceruleus noradrenergic neurons in the stress-induced depression of rats.
    Kitayama IT; Otani M; Murase S
    Ann N Y Acad Sci; 2008 Dec; 1148():95-8. PubMed ID: 19120095
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fewer pigmented locus coeruleus neurons in suicide victims: preliminary results.
    Arango V; Underwood MD; Mann JJ
    Biol Psychiatry; 1996 Jan; 39(2):112-20. PubMed ID: 8717609
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Age-dependent changes in noradrenergic innervations of the frontal cortex in F344 rats.
    Ishida Y; Shirokawa T; Miyaishi O; Komatsu Y; Isobe K
    Neurobiol Aging; 2001; 22(2):283-6. PubMed ID: 11182478
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Learning-dependent, transient increase of activity in noradrenergic neurons of locus coeruleus during slow wave sleep in the rat: brain stem-cortex interplay for memory consolidation?
    Eschenko O; Sara SJ
    Cereb Cortex; 2008 Nov; 18(11):2596-603. PubMed ID: 18321875
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reduced brain-derived neurotrophic factor is associated with a loss of serotonergic innervation in the hippocampus of aging mice.
    Luellen BA; Bianco LE; Schneider LM; Andrews AM
    Genes Brain Behav; 2007 Jul; 6(5):482-90. PubMed ID: 17156118
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Retrograde study of projections from the tuberomammillary nucleus to the dorsal raphe and the locus coeruleus in the rat.
    Lee HS; Lee BY; Waterhouse BD
    Brain Res; 2005 May; 1043(1-2):65-75. PubMed ID: 15862519
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The PDAPP mouse model of Alzheimer's disease: locus coeruleus neuronal shrinkage.
    German DC; Nelson O; Liang F; Liang CL; Games D
    J Comp Neurol; 2005 Nov; 492(4):469-76. PubMed ID: 16228992
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Locus coeruleus cell loss in the aging human brain: a non-random process.
    Manaye KF; McIntire DD; Mann DM; German DC
    J Comp Neurol; 1995 Jul; 358(1):79-87. PubMed ID: 7560278
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Corticotropin-releasing factor promotes growth of brain norepinephrine neuronal processes through Rho GTPase regulators of the actin cytoskeleton in rat.
    Swinny JD; Valentino RJ
    Eur J Neurosci; 2006 Nov; 24(9):2481-90. PubMed ID: 17100837
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Age-related changes in the release and uptake activity of presynaptic axon terminals of rat locus coeruleus neurons.
    Shirokawa T; Ishida Y; Isobe K
    Neurosci Lett; 2003 Jul; 344(3):212-4. PubMed ID: 12812843
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Monoaminergic neuronal activity up-regulates BDNF synthesis in cultured neonatal rat astrocytes.
    Juric DM; Miklic S; Carman-Krzan M
    Brain Res; 2006 Sep; 1108(1):54-62. PubMed ID: 16828062
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The noradrenergic system of aged GDNF heterozygous mice.
    Zaman V; Li Z; Middaugh L; Ramamoorthy S; Rohrer B; Nelson ME; Tomac AC; Hoffer BJ; Gerhardt GA; Granholm ACh
    Cell Transplant; 2003; 12(3):291-303. PubMed ID: 12797383
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In situ expression of brain-derived neurotrophic factor or neurotrophin-3 promotes sprouting of cortical serotonergic axons following a neurotoxic lesion.
    Grider MH; Mamounas LA; Le W; Shine HD
    J Neurosci Res; 2005 Nov; 82(3):404-12. PubMed ID: 16206279
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sleep research in space: expression of immediate early genes in forebrain structures of rats during the nasa neurolab mission (STS-90).
    Centini C; Pompeiano O
    Arch Ital Biol; 2007 May; 145(2):117-50. PubMed ID: 17639784
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Noradrenergic mechanisms in neurodegenerative diseases: a theory.
    Marien MR; Colpaert FC; Rosenquist AC
    Brain Res Brain Res Rev; 2004 Apr; 45(1):38-78. PubMed ID: 15063099
    [TBL] [Abstract][Full Text] [Related]  

  • 38. BDNF promotes connections of corticospinal neurons onto spared descending interneurons in spinal cord injured rats.
    Vavrek R; Girgis J; Tetzlaff W; Hiebert GW; Fouad K
    Brain; 2006 Jun; 129(Pt 6):1534-45. PubMed ID: 16632552
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Histamine excites noradrenergic neurons in locus coeruleus in rats.
    Korotkova TM; Sergeeva OA; Ponomarenko AA; Haas HL
    Neuropharmacology; 2005 Jul; 49(1):129-34. PubMed ID: 15992588
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Agonist-induced internalization of corticotropin-releasing factor receptors in noradrenergic neurons of the rat locus coeruleus.
    Reyes BA; Fox K; Valentino RJ; Van Bockstaele EJ
    Eur J Neurosci; 2006 Jun; 23(11):2991-8. PubMed ID: 16819988
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.