These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 15796099)
41. Transient-evoked otoacoustic emissions in a representative population sample aged 18 to 25 years. Ferguson MA; Smith PA; Davis AC; Lutman ME Audiology; 2000; 39(3):125-34. PubMed ID: 10905398 [TBL] [Abstract][Full Text] [Related]
42. Profiles of Stimulus-Frequency Otoacoustic Emissions from 0.5 to 20 kHz in Humans. Dewey JB; Dhar S J Assoc Res Otolaryngol; 2017 Feb; 18(1):89-110. PubMed ID: 27681700 [TBL] [Abstract][Full Text] [Related]
43. Hearing threshold estimation using concurrent measurement of distortion product otoacoustic emissions and auditory steady-state responses. Rosner T; Kandzia F; Oswald JA; Janssen T J Acoust Soc Am; 2011 Feb; 129(2):840-51. PubMed ID: 21361442 [TBL] [Abstract][Full Text] [Related]
44. Could the Use of Acoustic Reflexes Prior to Administering Distortion Product Otoacoustic Emissions (DPOAEs) Affect the Results of DPOAEs? Garrette R; Jones AL; Wilson MW Am J Audiol; 2018 Sep; 27(3):349-353. PubMed ID: 29800116 [TBL] [Abstract][Full Text] [Related]
48. Moments of click-evoked otoacoustic emissions in human ears: group delay and spread, instantaneous frequency and bandwidth. Keefe DH J Acoust Soc Am; 2012 Nov; 132(5):3319-50. PubMed ID: 23145615 [TBL] [Abstract][Full Text] [Related]
49. [Use of acoustic distortion products in clinical diagnosis. The site of origin of otoacoustic emissions in the inner ear]. Plinkert PK; Harris FP; Probst R HNO; 1993 Jul; 41(7):339-44. PubMed ID: 8376180 [TBL] [Abstract][Full Text] [Related]
51. [Relationship between distortion product otoacoustic emissions and pure tone thresholds in normal and hearing-impaired ears]. Chida E; Satoh N; Kawanami M; Kashiwamura M; Sakamoto T; Fukuda S; Inuyama Y Nihon Jibiinkoka Gakkai Kaiho; 1997 Apr; 100(4):436-43. PubMed ID: 9146016 [TBL] [Abstract][Full Text] [Related]
52. Distortion-product otoacoustic emissions. Values for clinical use. Bonfils P; Avan P Arch Otolaryngol Head Neck Surg; 1992 Oct; 118(10):1069-76. PubMed ID: 1389058 [TBL] [Abstract][Full Text] [Related]
53. Frequency selectivity of the human cochlea: Suppression tuning of spontaneous otoacoustic emissions. Manley GA; van Dijk P Hear Res; 2016 Jun; 336():53-62. PubMed ID: 27139323 [TBL] [Abstract][Full Text] [Related]
54. Volterra Slice otoacoustic emissions recorded using maximum length sequences from patients with sensorineural hearing loss. de Boer J; Thornton AR Hear Res; 2006 Sep; 219(1-2):121-36. PubMed ID: 16887305 [TBL] [Abstract][Full Text] [Related]
55. Spontaneous otoacoustic emissions and relaxation dynamics of long decay time OAEs in audiometrically normal and impaired subjects. Sisto R; Moleti A; Lucertini M J Acoust Soc Am; 2001 Feb; 109(2):638-47. PubMed ID: 11248970 [TBL] [Abstract][Full Text] [Related]
56. Pure-tone threshold estimation from extrapolated distortion product otoacoustic emission I/O-functions in normal and cochlear hearing loss ears. Boege P; Janssen T J Acoust Soc Am; 2002 Apr; 111(4):1810-8. PubMed ID: 12002865 [TBL] [Abstract][Full Text] [Related]
58. Distortion product otoacoustic emissions and sensorineural hearing loss. Moulin A; Bera JC; Collet L Audiology; 1994; 33(6):305-26. PubMed ID: 7741665 [TBL] [Abstract][Full Text] [Related]
59. Children with autism spectrum disorder have reduced otoacoustic emissions at the 1 kHz mid-frequency region. Bennetto L; Keith JM; Allen PD; Luebke AE Autism Res; 2017 Feb; 10(2):337-345. PubMed ID: 27404771 [TBL] [Abstract][Full Text] [Related]
60. [Study of the correspondence between pure tone and distorsion product otoacoustic emissions audiometrics: basis for an objective cochlear audiometrics model]. Jürgens A; Buisan A; Canela M; Abelló P Acta Otorrinolaringol Esp; 1999 May; 50(4):253-9. PubMed ID: 10431072 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]