These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 15796247)

  • 1. Reflowed solgel spherical microlens for high-efficiency optical coupling between a laser diode and a single-mode fiber.
    He M; Yuan X; Bu J; Cheong WC; Moh KJ
    Appl Opt; 2005 Mar; 44(8):1469-73. PubMed ID: 15796247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sample-inverted reflow technique for fabrication of a revolved-hyperboloid microlens array in hybrid solgel glass.
    He M; Yuan X; Bu J
    Opt Lett; 2004 Sep; 29(17):2004-6. PubMed ID: 15455761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simple reflow technique for fabrication of a microlens array in solgel glass.
    He M; Yuan XC; Ngo NQ; Bu J; Kudryashov V
    Opt Lett; 2003 May; 28(9):731-3. PubMed ID: 12747722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-cost and efficient coupling technique using reflowed sol-gel microlens.
    He M; Yuan XC; Ngo N; Bu J; Tao S
    Opt Express; 2003 Jul; 11(14):1621-7. PubMed ID: 19466040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Semiellipsoid microlens fabrication method using UV proximity printing.
    Hung CH; Hung SY; Shen MH; Yang H
    Appl Opt; 2012 Mar; 51(8):1122-30. PubMed ID: 22410992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laser printed fiber microlens for fiber-diode coupling by direct laser writing.
    Zou H; Huang H; Chen S; Li Q; Fu J; Lin F; Wu X
    Appl Opt; 2014 Dec; 53(36):8444-8. PubMed ID: 25608192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid sample-inverted reflow and soft-lithography technique for fabrication of conicoid microlens arrays.
    He M; Yuan X; Bu J; Cheong WC
    Appl Opt; 2005 Jul; 44(19):4130-5. PubMed ID: 16004061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Asymmetric elliptic-cone-shaped microlens for efficient coupling to high-power laser diodes.
    Lu YK; Tsai YC; Liu YD; Yeh SM; Lin CC; Cheng WH
    Opt Express; 2007 Feb; 15(4):1434-42. PubMed ID: 19532374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microlens for coupling a semiconductor laser to a single-mode fiber.
    Ghafoori-Shiraz H; Asano T
    Opt Lett; 1986 Aug; 11(8):537-8. PubMed ID: 19738681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reflow technique for the fabrication of an elliptical microlens array in sol-gel material.
    He M; Yuan X; Ngo NQ; Cheong WC; Bu J
    Appl Opt; 2003 Dec; 42(36):7174-8. PubMed ID: 14717295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laser micromachining of efficient fiber microlenses.
    Presby HM; Benner AF; Edwards CA
    Appl Opt; 1990 Jun; 29(18):2692-5. PubMed ID: 20567315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of concave refractive microlens arrays in solgel glass by a simple proximity-effect-assisted reflow technique.
    He M; Yuan X; Bu J; Cheong WC
    Opt Lett; 2004 May; 29(9):1007-9. PubMed ID: 15143656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of high fill factor cylindrical microlens array with isolated thermal reflow.
    Qiu J; Li M; Ye H; Yang C; Shi C
    Appl Opt; 2018 Sep; 57(25):7296-7302. PubMed ID: 30182991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-mode fiber with a plano-convex silicon microlens for an integrated butt-coupling scheme.
    Shiraishi K; Kagaya M; Muro K; Yoda H; Kogami Y; Tsai CS
    Appl Opt; 2008 Dec; 47(34):6345-9. PubMed ID: 19037361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid microdiffractive-microrefractive lens with a continuous relief fabricated by use of focused-ion-beam milling for single-mode fiber coupling.
    Fu YQ; Bryan NK
    Appl Opt; 2001 Nov; 40(32):5872-6. PubMed ID: 18364879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemically etched conical microlenses for coupling single-mode lasers into single-mode fibers.
    Eisenstein G; Vitello D
    Appl Opt; 1982 Oct; 21(19):3470-4. PubMed ID: 20396260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Some characteristics of an extremely-short-external-cavity laser diode realized by butt coupling a Fabry-Perot laser diode to a single-mode optical fiber.
    Sidorin Y; Howe D
    Appl Opt; 1998 May; 37(15):3256-63. PubMed ID: 18273278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monolithic integration of microlenses on the backside of a silicon photonics chip for expanded beam coupling.
    Mangal N; Snyder B; Van Campenhout J; Van Steenberge G; Missinne J
    Opt Express; 2021 Mar; 29(5):7601-7615. PubMed ID: 33726258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved distributed-index planar microlens and its application to 2-D lightwave components.
    Oikawa M; Iga K; Misawa S; Kokubun Y
    Appl Opt; 1983 Feb; 22(3):441-2. PubMed ID: 18195807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Replicated, high-aspect-ratio micro-optical components fabricated from inorganic solgel materials.
    Krause H; Mönch W; Zappe H
    Appl Opt; 2006 Jul; 45(20):4843-9. PubMed ID: 16807590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.