These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 15796249)

  • 21. Comments on "Accuracy of Raman lidar water vapor calibration and its applicability to long-term measurements".
    Whiteman DN; Venable D; Landulfo E
    Appl Opt; 2011 May; 50(15):2170-6; author reply 2177-8. PubMed ID: 21614108
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Study of 256 fiber array biaxial LiDAR optical assembly measurements.
    Ye Y; Xia M; Kong D; Zhai W; Xu M; Ge P; Zhou A; Zheng X
    Opt Express; 2023 Aug; 31(17):27136-27146. PubMed ID: 37710794
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of a high spectral resolution lidar based on confocal Fabry-Perot spectral filters.
    Hoffman DS; Repasky KS; Reagan JA; Carlsten JL
    Appl Opt; 2012 Sep; 51(25):6233-44. PubMed ID: 22945172
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bistatic imaging lidar technique for upper atmospheric studies.
    Welsh BM; Gardner CS
    Appl Opt; 1989 Jan; 28(1):82-8. PubMed ID: 20548430
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Water vapor differential absorption lidar development and evaluation.
    Browell EV; Wilkerson TD; McIlrath TJ
    Appl Opt; 1979 Oct; 18(20):3474-83. PubMed ID: 20216627
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of a differential column image motion light detection and ranging for measuring turbulence profiles.
    Jing X; Hou Z; Wu Y; Qin L; He F; Tan F
    Opt Lett; 2013 Sep; 38(17):3445-7. PubMed ID: 23988980
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Arrange and average algorithm for the retrieval of aerosol parameters from multiwavelength high-spectral-resolution lidar/Raman lidar data.
    Chemyakin E; Müller D; Burton S; Kolgotin A; Hostetler C; Ferrare R
    Appl Opt; 2014 Nov; 53(31):7252-66. PubMed ID: 25402885
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Simulation and optimization of Fe resonance fluorescence lidar performance for temperature-wind measurement.
    Li C; Wu D; Deng Q; Cui F; Zhong Z; Liu D; Wang Y
    Opt Express; 2022 Apr; 30(8):13278-13293. PubMed ID: 35472944
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles.
    Hair JW; Caldwell LM; Krueger DA; She CY
    Appl Opt; 2001 Oct; 40(30):5280-94. PubMed ID: 18364809
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In-line type micropulse lidar with an annular beam: theoretical approach.
    Shiina T; Yoshida K; Ito M; Okamura Y
    Appl Opt; 2005 Dec; 44(34):7467-74. PubMed ID: 16353820
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Practical considerations for the design of CO(2) lidar systems.
    Fox JA; Gautier CR; Ah JL
    Appl Opt; 1988 Mar; 27(5):847-55. PubMed ID: 20523699
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Langley mobile ozone lidar: ozone and aerosol atmospheric profiling for air quality research.
    De Young R; Carrion W; Ganoe R; Pliutau D; Gronoff G; Berkoff T; Kuang S
    Appl Opt; 2017 Jan; 56(3):721-730. PubMed ID: 28157936
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improved identification of the solution space of aerosol microphysical properties derived from the inversion of profiles of lidar optical data, part 2: simulations with synthetic optical data.
    Kolgotin A; Müller D; Chemyakin E; Romanov A
    Appl Opt; 2016 Dec; 55(34):9850-9865. PubMed ID: 27958481
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lidar measurements taken with a large-aperture liquid mirror. 2. Sodium resonance-fluorescence system.
    Argall PS; Vassiliev ON; Sica RJ; Mwangi MM
    Appl Opt; 2000 May; 39(15):2393-400. PubMed ID: 18345149
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lidar crossover function and misalignment effects.
    Sassen K; Dodd GC
    Appl Opt; 1982 Sep; 21(17):3162-5. PubMed ID: 20396195
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Use of a field lens for improving the overlap function of a lidar system employing an optical fiber in the receiver assembly.
    Comeron A; Sicard M; Kumar D; Rocadenbosch F
    Appl Opt; 2011 Oct; 50(28):5538-44. PubMed ID: 22016223
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Eye-safe lidar system for pesticide spray drift measurement.
    Gregorio E; Rocadenbosch F; Sanz R; Rosell-Polo JR
    Sensors (Basel); 2015 Feb; 15(2):3650-70. PubMed ID: 25658395
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Iron Boltzmann factor LIDAR: proposed new remote-sensing technique for mesospheric temperature.
    Gelbwachs JA
    Appl Opt; 1994 Oct; 33(30):7151-6. PubMed ID: 20941268
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lidar Observation of Cloud.
    Collis RT
    Science; 1965 Aug; 149(3687):978-81. PubMed ID: 17832581
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mobile lidar for simultaneous measurements of ozone, aerosols, and temperature in the stratosphere.
    Uchino O; Tabata I
    Appl Opt; 1991 May; 30(15):2005-12. PubMed ID: 20700169
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.