BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 15796342)

  • 1. A quasi-linear, viscoelastic, structural model of the plantar soft tissue with frequency-sensitive damping properties.
    Ledoux WR; Meaney DF; Hillstrom HJ
    J Biomech Eng; 2004 Dec; 126(6):831-7. PubMed ID: 15796342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The compressive material properties of the plantar soft tissue.
    Ledoux WR; Blevins JJ
    J Biomech; 2007; 40(13):2975-81. PubMed ID: 17433335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Simulation of the Viscoelastic Behaviour of Heel Pad During Weight-Bearing Activities of Daily Living.
    Behforootan S; Chatzistergos PE; Chockalingam N; Naemi R
    Ann Biomed Eng; 2017 Dec; 45(12):2750-2761. PubMed ID: 28948405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extraction of mechanical properties of foot plantar tissues using ultrasound indentation associated with genetic algorithm.
    Ling HY; Choi PC; Zheng YP; Lau KT
    J Mater Sci Mater Med; 2007 Aug; 18(8):1579-86. PubMed ID: 17483905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methods for quasi-linear viscoelastic modeling of soft tissue: application to incremental stress-relaxation experiments.
    Sarver JJ; Robinson PS; Elliott DM
    J Biomech Eng; 2003 Oct; 125(5):754-8. PubMed ID: 14618936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An improved method to analyze the stress relaxation of ligaments following a finite ramp time based on the quasi-linear viscoelastic theory.
    Abramowitch SD; Woo SL
    J Biomech Eng; 2004 Feb; 126(1):92-7. PubMed ID: 15171134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The quasi-linear viscoelastic properties of diabetic and non-diabetic plantar soft tissue.
    Pai S; Ledoux WR
    Ann Biomed Eng; 2011 May; 39(5):1517-27. PubMed ID: 21327701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discrete quasi-linear viscoelastic damping analysis of connective tissues, and the biomechanics of stretching.
    Babaei B; Velasquez-Mao AJ; Thomopoulos S; Elson EL; Abramowitch SD; Genin GM
    J Mech Behav Biomed Mater; 2017 May; 69():193-202. PubMed ID: 28088071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional finite element analysis of the foot during standing--a material sensitivity study.
    Cheung JT; Zhang M; Leung AK; Fan YB
    J Biomech; 2005 May; 38(5):1045-54. PubMed ID: 15797586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strain-rate dependence of viscous properties of the plantar soft tissue identified by a spherical indentation test.
    Negishi T; Ito K; Kamono A; Lee T; Ogihara N
    J Mech Behav Biomed Mater; 2020 Feb; 102():103470. PubMed ID: 31605932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A constituent-based model for the nonlinear viscoelastic behavior of ligaments.
    Vena P; Gastaldi D; Contro R
    J Biomech Eng; 2006 Jun; 128(3):449-57. PubMed ID: 16706595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strain-dependent stress relaxation behavior of healthy right ventricular free wall.
    Liu W; Labus KM; Ahern M; LeBar K; Avazmohammadi R; Puttlitz CM; Wang Z
    Acta Biomater; 2022 Oct; 152():290-299. PubMed ID: 36030049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental verification of the roles of intrinsic matrix viscoelasticity and tension-compression nonlinearity in the biphasic response of cartilage.
    Huang CY; Soltz MA; Kopacz M; Mow VC; Ateshian GA
    J Biomech Eng; 2003 Feb; 125(1):84-93. PubMed ID: 12661200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quasi-linear viscoelastic behavior of the human periodontal ligament.
    Toms SR; Dakin GJ; Lemons JE; Eberhardt AW
    J Biomech; 2002 Oct; 35(10):1411-5. PubMed ID: 12231287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A clinically applicable non-invasive method to quantitatively assess the visco-hyperelastic properties of human heel pad, implications for assessing the risk of mechanical trauma.
    Behforootan S; Chatzistergos PE; Chockalingam N; Naemi R
    J Mech Behav Biomed Mater; 2017 Apr; 68():287-295. PubMed ID: 28222391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Viscoelastic effects during loading play an integral role in soft tissue mechanics.
    Troyer KL; Estep DJ; Puttlitz CM
    Acta Biomater; 2012 Jan; 8(1):234-43. PubMed ID: 21855664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of internal stress concentrations in plantar soft-tissue--A preliminary three-dimensional finite element analysis.
    Chen WM; Lee T; Lee PV; Lee JW; Lee SJ
    Med Eng Phys; 2010 May; 32(4):324-31. PubMed ID: 20117957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A viscoelastic sphere model for the representation of plantar soft tissue during simulations.
    Güler HC; Berme N; Simon SR
    J Biomech; 1998 Sep; 31(9):847-53. PubMed ID: 9802786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Region-specific constitutive modeling of the plantar soft tissue.
    Ou H; Zhan P; Kang L; Su J; Hu X; Johnson S
    Biomech Model Mechanobiol; 2018 Oct; 17(5):1373-1388. PubMed ID: 29797113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Material properties of the human calcaneal fat pad in compression: experiment and theory.
    Miller-Young JE; Duncan NA; Baroud G
    J Biomech; 2002 Dec; 35(12):1523-31. PubMed ID: 12445605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.