BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 15796546)

  • 1. Iridium(0) nanocluster, acid-assisted catalysis of neat acetone hydrogenation at room temperature: exceptional activity, catalyst lifetime, and selectivity at complete conversion.
    Ozkar S; Finke RG
    J Am Chem Soc; 2005 Apr; 127(13):4800-8. PubMed ID: 15796546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ruthenium(0) nanoclusters stabilized by a Nanozeolite framework: isolable, reusable, and green catalyst for the hydrogenation of neat aromatics under mild conditions with the unprecedented catalytic activity and lifetime.
    Zahmakiran M; Tonbul Y; Ozkar S
    J Am Chem Soc; 2010 May; 132(18):6541-9. PubMed ID: 20405831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ formed "weakly ligated/labile ligand" iridium(0) nanoparticles and aggregates as catalysts for the complete hydrogenation of neat benzene at room temperature and mild pressures.
    Bayram E; Zahmakiran M; Ozkar S; Finke RG
    Langmuir; 2010 Jul; 26(14):12455-64. PubMed ID: 20536218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence that imidazolium-based ionic ligands can be metal(0)/nanocluster catalyst poisons in at least the test case of iridium(0)-catalyzed acetone hydrogenation.
    Ott LS; Campbell S; Seddon KR; Finke RG
    Inorg Chem; 2007 Nov; 46(24):10335-44. PubMed ID: 17975891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development plus kinetic and mechanistic studies of a prototype supported-nanoparticle heterogeneous catalyst formation system in contact with solution: Ir(1,5-COD)Cl/gamma-Al2O3 and its reduction by H2 to Ir(0)n/gamma-Al2O3.
    Mondloch JE; Wang Q; Frenkel AI; Finke RG
    J Am Chem Soc; 2010 Jul; 132(28):9701-14. PubMed ID: 20575521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iridium Ziegler-type hydrogenation catalysts made from [(1,5-COD)Ir(mu-O2C8H15)](2) and AlEt3: spectroscopic and kinetic evidence for the Ir(n) species present and for nanoparticles as the fastest catalyst.
    Alley WM; Hamdemir IK; Wang Q; Frenkel AI; Li L; Yang JC; Menard LD; Nuzzo RG; Ozkar S; Johnson KA; Finke RG
    Inorg Chem; 2010 Sep; 49(17):8131-47. PubMed ID: 20681520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monitoring supported-nanocluster heterogeneous catalyst formation: product and kinetic evidence for a 2-step, nucleation and autocatalytic growth mechanism of Pt(0)n formation from H2PtCl6 on Al2O3 or TiO2.
    Mondloch JE; Yan X; Finke RG
    J Am Chem Soc; 2009 May; 131(18):6389-96. PubMed ID: 19379011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A test of the transition-metal nanocluster formation and stabilization ability of the most common polymeric stabilizer, poly(vinylpyrrolidone), as well as four other polymeric protectants.
    Ott LS; Hornstein BJ; Finke RG
    Langmuir; 2006 Oct; 22(22):9357-67. PubMed ID: 17042554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Industrial Ziegler-type hydrogenation catalysts made from Co(neodecanoate)2 or Ni(2-ethylhexanoate)2 and AlEt3: evidence for nanoclusters and sub-nanocluster or larger Ziegler-nanocluster based catalysis.
    Alley WM; Hamdemir IK; Wang Q; Frenkel AI; Li L; Yang JC; Menard LD; Nuzzo RG; Özkar S; Yih KH; Johnson KA; Finke RG
    Langmuir; 2011 May; 27(10):6279-94. PubMed ID: 21480617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid ketone transfer hydrogenation by employing simple, in situ prepared iridium(I) precatalysts supported by "non-N--H" P,N ligands.
    Lundgren RJ; Stradiotto M
    Chemistry; 2008; 14(33):10388-95. PubMed ID: 18924188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anisole hydrogenation with well-characterized polyoxoanion- and tetrabutylammonium-stabilized Rh(0) nanoclusters: effects of added water and acid, plus enhanced catalytic rate, lifetime, and partial hydrogenation selectivity.
    Widegren JA; Finke RG
    Inorg Chem; 2002 Mar; 41(6):1558-72. PubMed ID: 11896725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dimethylammonium hexanoate stabilized rhodium(0) nanoclusters identified as true heterogeneous catalysts with the highest observed activity in the dehydrogenation of dimethylamine-borane.
    Zahmakiran M; Ozkar S
    Inorg Chem; 2009 Sep; 48(18):8955-64. PubMed ID: 19702246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ranking the lacunary (Bu4N)9[H[alpha2-P2W17O61]] polyoxometalate's stabilizing ability for Ir(0)(n) nanocluster formation and stabilization using the five-criteria method plus necessary control experiments.
    Graham CR; Ott LS; Finke RG
    Langmuir; 2009 Feb; 25(3):1327-36. PubMed ID: 19133735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly selective hydrogenation of phenol and derivatives over a Pd@carbon nitride catalyst in aqueous media.
    Wang Y; Yao J; Li H; Su D; Antonietti M
    J Am Chem Soc; 2011 Mar; 133(8):2362-5. PubMed ID: 21294506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Is it homogeneous or heterogeneous catalysis? Identification of bulk ruthenium metal as the true catalyst in benzene hydrogenations starting with the monometallic precursor, Ru(II)(eta 6-C6Me6)(OAc)2, plus kinetic characterization of the heterogeneous nucleation, then autocatalytic surface-growth mechanism of metal film formation.
    Widegren JA; Bennett MA; Finke RG
    J Am Chem Soc; 2003 Aug; 125(34):10301-10. PubMed ID: 12926954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrazeolite ruthenium(0) nanoclusters: a superb catalyst for the hydrogenation of benzene and the hydrolysis of sodium borohydride.
    Zahmakiran M; Ozkar S
    Langmuir; 2008 Jul; 24(14):7065-7. PubMed ID: 18547068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A nonmetal catalyst for molecular hydrogen activation with comparable catalytic hydrogenation capability to noble metal catalyst.
    Li B; Xu Z
    J Am Chem Soc; 2009 Nov; 131(45):16380-2. PubMed ID: 19845383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ruthenium(0) nanoclusters supported on hydroxyapatite: highly active, reusable and green catalyst in the hydrogenation of aromatics under mild conditions with an unprecedented catalytic lifetime.
    Zahmakiran M; Tonbul Y; Ozkar S
    Chem Commun (Camb); 2010 Jul; 46(26):4788-90. PubMed ID: 20495727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model Ziegler-type hydrogenation catalyst precursors, [(1,5-COD)M(mu-O2C8H15)]2 (M = Ir and Rh): synthesis, characterization, and demonstration of catalytic activity en route to identifying the true industrial hydrogenation catalysts.
    Alley WM; Girard CW; Ozkar S; Finke RG
    Inorg Chem; 2009 Feb; 48(3):1114-21. PubMed ID: 19127998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ formed catalytically active ruthenium nanocatalyst in room temperature dehydrogenation/dehydrocoupling of ammonia-borane from Ru(cod)(cot) precatalyst.
    Zahmakiran M; Ayvalı T; Philippot K
    Langmuir; 2012 Mar; 28(11):4908-14. PubMed ID: 22356554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.