These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 15796698)
21. Chlorophyll-a derivatives with various hydrocarbon ester groups for efficient dye-sensitized solar cells: static and ultrafast evaluations on electron injection and charge collection processes. Wang XF; Tamiaki H; Wang L; Tamai N; Kitao O; Zhou H; Sasaki S Langmuir; 2010 May; 26(9):6320-7. PubMed ID: 20380394 [TBL] [Abstract][Full Text] [Related]
22. Determination of the electron lifetime in nanocrystalline dye solar cells by open-circuit voltage decay measurements. Zaban A; Greenshtein M; Bisquert J Chemphyschem; 2003 Aug; 4(8):859-64. PubMed ID: 12961985 [No Abstract] [Full Text] [Related]
24. Efficient and stable solid-state dye-sensitized solar cells based on a high-molar-extinction-coefficient sensitizer. Wang M; Moon SJ; Xu M; Chittibabu K; Wang P; Cevey-Ha NL; Humphry-Baker R; Zakeeruddin SM; Grätzel M Small; 2010 Jan; 6(2):319-24. PubMed ID: 19902434 [TBL] [Abstract][Full Text] [Related]
25. Electron transport in silver-semiconductor nanocomposite films exhibiting multicolor photochromism. Kawahara K; Suzuki K; Ohko Y; Tatsuma T Phys Chem Chem Phys; 2005 Nov; 7(22):3851-5. PubMed ID: 16358036 [TBL] [Abstract][Full Text] [Related]
26. Photovoltaic and photoelectrochemical conversion of solar energy. Grätzel M Philos Trans A Math Phys Eng Sci; 2007 Apr; 365(1853):993-1005. PubMed ID: 17272237 [TBL] [Abstract][Full Text] [Related]
27. Anatase TiO(2) nanosheets with exposed (001) facets: improved photoelectric conversion efficiency in dye-sensitized solar cells. Yu J; Fan J; Lv K Nanoscale; 2010 Oct; 2(10):2144-9. PubMed ID: 20852787 [TBL] [Abstract][Full Text] [Related]
28. Parameters affecting the chemical work output of a hybrid photoelectrochemical biofuel cell. Hambourger M; Liddell PA; Gust D; Moore AL; Moore TA Photochem Photobiol Sci; 2007 Apr; 6(4):431-7. PubMed ID: 17404638 [TBL] [Abstract][Full Text] [Related]
29. A strategy to increase the efficiency of the dye-sensitized TiO2 solar cells operated by photoexcitation of dye-to-TiO2 charge-transfer bands. Tae EL; Lee SH; Lee JK; Yoo SS; Kang EJ; Yoon KB J Phys Chem B; 2005 Dec; 109(47):22513-22. PubMed ID: 16853932 [TBL] [Abstract][Full Text] [Related]
30. A study of electron transfer in Ru(dcbpy)2(NCS)2 sensitized nanocrystalline TiO2 and SnO2 films induced by red-wing excitation. Myllyperkiö P; Benko G; Korppi-Tommola J; Yartsev AP; Sundström V Phys Chem Chem Phys; 2008 Feb; 10(7):996-1002. PubMed ID: 18259639 [TBL] [Abstract][Full Text] [Related]
31. Electron storage in single wall carbon nanotubes. Fermi level equilibration in semiconductor-SWCNT suspensions. Kongkanand A; Kamat PV ACS Nano; 2007 Aug; 1(1):13-21. PubMed ID: 19203126 [TBL] [Abstract][Full Text] [Related]
32. Improvement in light harvesting in a dye sensitized solar cell based on cascade charge transfer. Yang L; Leung WW; Wang J Nanoscale; 2013 Aug; 5(16):7493-8. PubMed ID: 23831867 [TBL] [Abstract][Full Text] [Related]
33. Carotenoid and pheophytin on semiconductor surface: self-assembly and photoinduced electron transfer. Pan J; Xu Y; Sun L; Sundström V; Polívka T J Am Chem Soc; 2004 Mar; 126(10):3066-7. PubMed ID: 15012133 [TBL] [Abstract][Full Text] [Related]
34. Dye-sensitized solar cells based on multiwalled carbon nanotube-titania/titania bilayer structure photoelectrode. Lin WJ; Hsu CT; Tsai YC J Colloid Interface Sci; 2011 Jun; 358(2):562-6. PubMed ID: 21463866 [TBL] [Abstract][Full Text] [Related]
35. Improved performance in dye-sensitized solar cells employing TiO2 photoelectrodes coated with metal hydroxides. Yum JH; Nakade S; Kim DY; Yanagida S J Phys Chem B; 2006 Feb; 110(7):3215-9. PubMed ID: 16494331 [TBL] [Abstract][Full Text] [Related]
36. An alternative ionic liquid based electrolyte for dye-sensitized solar cells. Xue B; Wang H; Hu Y; Li H; Wang Z; Meng Q; Huang X; Sato O; Chen L; Fujishima A Photochem Photobiol Sci; 2004 Oct; 3(10):918-9. PubMed ID: 15480481 [TBL] [Abstract][Full Text] [Related]
37. Photoelectrochemical solar cell using extract of Eugenia jambolana Lam as a natural sensitizer. Garcia CG; Polo AS; Iha NY An Acad Bras Cienc; 2003 Jun; 75(2):163-5. PubMed ID: 12894301 [TBL] [Abstract][Full Text] [Related]
38. A dendritic oligothiophene ruthenium sensitizer for stable dye-sensitized solar cells. Sauvage F; Fischer MK; Mishra A; Zakeeruddin SM; Nazeeruddin MK; Bäuerle P; Grätzel M ChemSusChem; 2009; 2(8):761-8. PubMed ID: 19569164 [TBL] [Abstract][Full Text] [Related]
39. Thermodynamically driven one-dimensional evolution of anatase TiO2 nanorods: one-step hydrothermal synthesis for emerging intrinsic superiority of dimensionality. Chen J; Yang HB; Miao J; Wang HY; Liu B J Am Chem Soc; 2014 Oct; 136(43):15310-8. PubMed ID: 25290360 [TBL] [Abstract][Full Text] [Related]
40. Fabrication of dye-sensitized solar cells with an open-circuit photovoltage of 1 V. Iwamoto S; Sazanami Y; Inoue M; Inoue T; Hoshi T; Shigaki K; Kaneko M; Maenosono A ChemSusChem; 2008; 1(5):401-3. PubMed ID: 18702132 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]