BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 15796897)

  • 1. Alkaline phosphatase retained in HepG2 hepatocarcinoma cells vs. alkaline phosphatase released to culture medium: difference of aberrant glycosylation.
    Nowrouzi A; Yazdanparast R
    Biochem Biophys Res Commun; 2005 May; 330(2):400-9. PubMed ID: 15796897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intestinal-type alkaline phosphatase produced by human hepatoblastoma cell line HUH-6 clone 5.
    Yamamoto H; Tanaka M; Nakabayashi H; Sato J; Okochi T; Kishimoto S
    Cancer Res; 1984 Jan; 44(1):339-44. PubMed ID: 6317171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induction of alkaline phosphatase activity in cultured human intracranial tumor cells.
    Takahara N; Herz F; Singer RM; Hirano A; Koss LG
    Cancer Res; 1982 Feb; 42(2):563-8. PubMed ID: 7055804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The human hepatoma cell line, HepG2, secretes functional cholinesterase.
    Osada J; López-Miranda J; Sastre J; Ordovás JM
    Biochem Mol Biol Int; 1994 Aug; 33(6):1099-105. PubMed ID: 7804135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Alkaline phosphatase of the rat small intestine--purification of the enzyme and its physiological significance].
    Furusaki K
    Hokkaido Igaku Zasshi; 1983 May; 58(3):250-64. PubMed ID: 6618424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Panaxydol inhibits the proliferation and induces the differentiation of human hepatocarcinoma cell line HepG2.
    Guo L; Song L; Wang Z; Zhao W; Mao W; Yin M
    Chem Biol Interact; 2009 Sep; 181(1):138-43. PubMed ID: 19450571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of culture medium supplementation of tobacco NT1 cell suspension cultures on the N-glycosylation of human secreted alkaline phosphatase.
    Becerra-Arteaga A; Shuler ML
    Biotechnol Bioeng; 2007 Aug; 97(6):1585-93. PubMed ID: 17238209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of liver-type alkaline phosphatase from human gastric carcinoma cells (KMK-2) in vitro.
    Tokumitsu SI; Tokumitsu K; Kohnoe K; Takeuchi T
    Cancer Res; 1979 Nov; 39(11):4732-8. PubMed ID: 498100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elevated serum levels of Trichosanthes japonica agglutinin-I binding alkaline phosphatase in relation to high-risk groups for hepatocellular carcinomas.
    Fukushima K; Hada T; Higashino K; Yamashita K
    Clin Cancer Res; 1998 Nov; 4(11):2771-7. PubMed ID: 9829741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of alkaline phosphatase in human urinary bladder carcinoma cell lines and enzyme regulation with prednisolone or sodium chloride.
    Sorimachi K; Yasumura Y; Kakuya T
    Jpn J Exp Med; 1985 Oct; 55(5):185-92. PubMed ID: 3938823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Further investigation of a variant of the placental alkaline phosphatase in human hepatic carcinoma.
    Higashino K; Kudo S; Yamamura Y
    Cancer Res; 1974 Dec; 34(12):3347-51. PubMed ID: 4371956
    [No Abstract]   [Full Text] [Related]  

  • 12. [Changes of alkaline phosphatase sugar chains in hepatocellular carcinoma tissue].
    Chen GQ; Zhang Q; Xu YF; Zhang WZ; Guan M; Su B; Liang HQ; Lu Y
    Zhonghua Gan Zang Bing Za Zhi; 2003 Dec; 11(12):739-41. PubMed ID: 14697136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effect of overexpression of glycosylphosphatidylinositol-specific phospholipase D on biological character of hepatocellular carcinoma cell line HepG2].
    He WJ; Tang JH; Tan CC; Duan Q; Wang KJ; Zuo KQ; Yuan XY
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2008 Feb; 33(2):103-9. PubMed ID: 18326903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of osteogenic potential by recombinant human bone morphogenic protein-2 in human periodontal ligament cells: effect of serum, culture medium, and osteoinductive medium.
    Hou LT; Li TI; Liu CM; Liu BY; Liu CL; Mi HW
    J Periodontal Res; 2007 Jun; 42(3):244-52. PubMed ID: 17451544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell proliferation and subcellular localization of alkaline phosphatase activity in rat liver parenchyma during azo dye carcinogenesis.
    Karasaki S
    Cancer Res; 1975 Mar; 35(3):482-91. PubMed ID: 803869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of a hybrid form of alkaline phosphatase isoenzyme in a newly established cell line (HuG-1) from a gastric cancer patient.
    Imanishi H; Hada T; Muratani K; Hirano K; Higashino K
    Cancer Res; 1990 Jun; 50(11):3408-12. PubMed ID: 2334935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The pattern of glycosyl- and sulfotransferase activities in cancer cell lines: a predictor of individual cancer-associated distinct carbohydrate structures for the structural identification of signature glycans.
    Chandrasekaran EV; Xue J; Neelamegham S; Matta KL
    Carbohydr Res; 2006 Jun; 341(8):983-94. PubMed ID: 16545347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Altered form of placental alkaline phosphatase produced by JAR choriocarcinoma cells in culture.
    Neuwald PD; Brooks M
    Cancer Res; 1981 May; 41(5):1682-9. PubMed ID: 7194143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Newly established uterine cervical cancer cell line (SKG-III) with Regan isoenzyme, human chorionic gonadotropin beta-subunit, and pregnancy-specific beta 1-glycoprotein phenotypes.
    Nozawa S; Udagawa Y; Ohta H; Kurihara S; Fishman WH
    Cancer Res; 1983 Apr; 43(4):1748-60. PubMed ID: 6600963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alkaline phosphatase isoenzyme of colonic carcinoma in Wistar-Furth rats.
    Otani R; Okochi T; Higashino K; Ito F; Miyamoto M
    Oncodev Biol Med; 1982; 3(4):255-68. PubMed ID: 7134019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.