BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 15797216)

  • 1. Gold nanoparticles as a colorimetric sensor for protein conformational changes.
    Chah S; Hammond MR; Zare RN
    Chem Biol; 2005 Mar; 12(3):323-8. PubMed ID: 15797216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of colloidal gold size on the conformational changes of adsorbed cytochrome c: probing by circular dichroism, UV-visible, and infrared spectroscopy.
    Jiang X; Jiang J; Jin Y; Wang E; Dong S
    Biomacromolecules; 2005; 6(1):46-53. PubMed ID: 15638503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An operationally simple colorimetric assay of hyaluronidase activity using cationic gold nanoparticles.
    Kim JW; Kim JH; Chung SJ; Chung BH
    Analyst; 2009 Jul; 134(7):1291-3. PubMed ID: 19562190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SPR sensor chip for detection of small molecules using molecularly imprinted polymer with embedded gold nanoparticles.
    Matsui J; Akamatsu K; Hara N; Miyoshi D; Nawafune H; Tamaki K; Sugimoto N
    Anal Chem; 2005 Jul; 77(13):4282-5. PubMed ID: 15987138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pH-dependent protein conformational changes in albumin:gold nanoparticle bioconjugates: a spectroscopic study.
    Shang L; Wang Y; Jiang J; Dong S
    Langmuir; 2007 Feb; 23(5):2714-21. PubMed ID: 17249699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinase-catalyzed modification of gold nanoparticles: a new approach to colorimetric kinase activity screening.
    Wang Z; Lévy R; Fernig DG; Brust M
    J Am Chem Soc; 2006 Feb; 128(7):2214-5. PubMed ID: 16478166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Colorimetric detection of Pb2+ using glutathione functionalized gold nanoparticles.
    Chai F; Wang C; Wang T; Li L; Su Z
    ACS Appl Mater Interfaces; 2010 May; 2(5):1466-70. PubMed ID: 20429606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Denaturation and renaturation of self-assembled yeast iso-1-cytochrome c on Au.
    Chah S; Kumar CV; Hammond MR; Zare RN
    Anal Chem; 2004 Apr; 76(7):2112-7. PubMed ID: 15053677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmon-induced enhancement in analytical performance based on gold nanoparticles deposited on TiO2 film.
    Zhu A; Luo Y; Tian Y
    Anal Chem; 2009 Sep; 81(17):7243-7. PubMed ID: 19655788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accelerated color change of gold nanoparticles assembled by DNAzymes for simple and fast colorimetric Pb2+ detection.
    Liu J; Lu Y
    J Am Chem Soc; 2004 Oct; 126(39):12298-305. PubMed ID: 15453763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasonic, chemical stability and preparation of self-assembled fullerene[C60]-gold nanoparticle films.
    Ko WB; Yun JM; Jo SW; Shon YS
    Ultrasonics; 2006 Dec; 44 Suppl 1():e363-6. PubMed ID: 16814825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectroscopic identification of S-Au interaction in cysteine capped gold nanoparticles.
    Aryal S; B K C R; Dharmaraj N; Bhattarai N; Kim CH; Kim HY
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 Jan; 63(1):160-3. PubMed ID: 15955726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of dielectric function of biotin-capped gold nanoparticles via signal enhancement on surface plasmon resonance.
    Li X; Tamada K; Baba A; Knoll W; Hara M
    J Phys Chem B; 2006 Aug; 110(32):15755-62. PubMed ID: 16898722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carboranethiol-modified gold surfaces. A study and comparison of modified cluster and flat surfaces.
    Base T; Bastl Z; Plzák Z; Grygar T; Plesek J; Carr MJ; Malina V; Subrt J; Bohácek J; Vecerníková E; Kríz O
    Langmuir; 2005 Aug; 21(17):7776-85. PubMed ID: 16089383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Colorimetric response of peptide-functionalized gold nanoparticles to metal ions.
    Slocik JM; Zabinski JS; Phillips DM; Naik RR
    Small; 2008 May; 4(5):548-51. PubMed ID: 18383577
    [No Abstract]   [Full Text] [Related]  

  • 18. A study on the sizes and concentrations of gold nanoparticles by spectra of absorption, resonance Rayleigh scattering and resonance non-linear scattering.
    He YQ; Liu SP; Kong L; Liu ZF
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Oct; 61(13-14):2861-6. PubMed ID: 16165025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Slow spontaneous transformation of the morphology of ultrathin gold films characterized by localized surface plasmon resonance spectroscopy.
    Qi ZM; Xia S; Zou H
    Nanotechnology; 2009 Jun; 20(25):255702. PubMed ID: 19491460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gold nanoparticle-based competitive colorimetric assay for detection of protein-protein interactions.
    Tsai CS; Yu TB; Chen CT
    Chem Commun (Camb); 2005 Sep; (34):4273-5. PubMed ID: 16113719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.