BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 15797252)

  • 1. The central loop of Escherichia coli glutamine synthetase is flexible and functionally passive.
    Pearson JT; Dabrowski MJ; Kung I; Atkins WM
    Arch Biochem Biophys; 2005 Apr; 436(2):397-405. PubMed ID: 15797252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structures of mammalian glutamine synthetases illustrate substrate-induced conformational changes and provide opportunities for drug and herbicide design.
    Krajewski WW; Collins R; Holmberg-Schiavone L; Jones TA; Karlberg T; Mowbray SL
    J Mol Biol; 2008 Jan; 375(1):217-28. PubMed ID: 18005987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. YbdK is a carboxylate-amine ligase with a gamma-glutamyl:Cysteine ligase activity: crystal structure and enzymatic assays.
    Lehmann C; Doseeva V; Pullalarevu S; Krajewski W; Howard A; Herzberg O
    Proteins; 2004 Aug; 56(2):376-83. PubMed ID: 15211520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A functional role for a flexible loop containing Glu182 in the class II fructose-1,6-bisphosphate aldolase from Escherichia coli.
    Zgiby S; Plater AR; Bates MA; Thomson GJ; Berry A
    J Mol Biol; 2002 Jan; 315(2):131-40. PubMed ID: 11779234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing the catalytic roles of n2-site glutamate residues in Escherichia coli glutamine synthetase by mutagenesis.
    Witmer MR; Palmieri-Young D; Villafranca JJ
    Protein Sci; 1994 Oct; 3(10):1746-59. PubMed ID: 7849593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-resolved fluorescence studies of tryptophan mutants of Escherichia coli glutamine synthetase: conformational analysis of intermediates and transition-state complexes.
    Atkins WM; Villafranca JJ
    Protein Sci; 1992 Mar; 1(3):342-55. PubMed ID: 1363912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic and structural analysis of mutant Escherichia coli dihydroorotases: a flexible loop stabilizes the transition state.
    Lee M; Maher MJ; Christopherson RI; Guss JM
    Biochemistry; 2007 Sep; 46(37):10538-50. PubMed ID: 17711307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic independent functions of a protein kinase as revealed by a kinase-dead mutant: study of the Lys72His mutant of cAMP-dependent kinase.
    Iyer GH; Garrod S; Woods VL; Taylor SS
    J Mol Biol; 2005 Sep; 351(5):1110-22. PubMed ID: 16054648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The kinetic study of arginine kinase from the sea cucumber Stichopus japonicus with 5,5'-dithiobis-(2-nitrobenzoic acid).
    Feng Z; Qin G; Xicheng W
    Int J Biol Macromol; 2005 Aug; 36(3):184-90. PubMed ID: 16038973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adenylylation and catalytic properties of Mycobacterium tuberculosis glutamine synthetase expressed in Escherichia coli versus mycobacteria.
    Mehta R; Pearson JT; Mahajan S; Nath A; Hickey MJ; Sherman DR; Atkins WM
    J Biol Chem; 2004 May; 279(21):22477-82. PubMed ID: 15037612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovery of the ammonium substrate site on glutamine synthetase, a third cation binding site.
    Liaw SH; Kuo I; Eisenberg D
    Protein Sci; 1995 Nov; 4(11):2358-65. PubMed ID: 8563633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Loop movement and catalysis in creatine kinase.
    Wang PF; Flynn AJ; McLeish MJ; Kenyon GL
    IUBMB Life; 2005; 57(4-5):355-62. PubMed ID: 16036620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational studies of tryptophanyl-tRNA synthetase: activation of ATP by induced-fit.
    Kapustina M; Carter CW
    J Mol Biol; 2006 Oct; 362(5):1159-80. PubMed ID: 16949606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation and coupling of the glutaminase and synthase reaction of glutamate synthase is mediated by E1013 of the ferredoxin-dependent enzyme, belonging to loop 4 of the synthase domain.
    Dossena L; Curti B; Vanoni MA
    Biochemistry; 2007 Apr; 46(15):4473-85. PubMed ID: 17373776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural model for the reaction mechanism of glutamine synthetase, based on five crystal structures of enzyme-substrate complexes.
    Liaw SH; Eisenberg D
    Biochemistry; 1994 Jan; 33(3):675-81. PubMed ID: 7904828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-resolved fluorescence and computational studies of adenylylated glutamine synthetase: analysis of intersubunit interactions.
    Atkins WM; Cader BM; Hemmingsen J; Villafranca JJ
    Protein Sci; 1993 May; 2(5):800-13. PubMed ID: 8098638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-function relationships in Escherichia coli adenylate cyclase.
    Linder JU
    Biochem J; 2008 Nov; 415(3):449-54. PubMed ID: 18620542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Allosteric communication in dihydrofolate reductase: signaling network and pathways for closed to occluded transition and back.
    Chen J; Dima RI; Thirumalai D
    J Mol Biol; 2007 Nov; 374(1):250-66. PubMed ID: 17916364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of the conformational transitions in the assembling of the Michaelis complex of a bisubstrate enzyme: a (15)N relaxation study of Escherichia coli 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase.
    Lescop E; Lu Z; Liu Q; Xu H; Li G; Xia B; Yan H; Jin C
    Biochemistry; 2009 Jan; 48(2):302-12. PubMed ID: 19108643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global conformation of the Escherichia coli replication factor DnaC protein in absence and presence of nucleotide cofactors.
    Galletto R; Maillard R; Jezewska MJ; Bujalowski W
    Biochemistry; 2004 Aug; 43(34):10988-1001. PubMed ID: 15323558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.