BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 15797457)

  • 21. Transforming growth factor beta s and fibroblast growth factors and their receptors: role in sutural biology and craniosynostosis.
    Cohen MM
    J Bone Miner Res; 1997 Mar; 12(3):322-31. PubMed ID: 9076574
    [No Abstract]   [Full Text] [Related]  

  • 22. Mutations in snail family genes enhance craniosynostosis of Twist1 haplo-insufficient mice: implications for Saethre-Chotzen Syndrome.
    Oram KF; Gridley T
    Genetics; 2005 Jun; 170(2):971-4. PubMed ID: 15802514
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fibroblast growth factors lead to increased Msx2 expression and fusion in calvarial sutures.
    Ignelzi MA; Wang W; Young AT
    J Bone Miner Res; 2003 Apr; 18(4):751-9. PubMed ID: 12674336
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genetic basis of single-suture synostoses: genes, chromosomes and clinical implications.
    Lattanzi W; Bukvic N; Barba M; Tamburrini G; Bernardini C; Michetti F; Di Rocco C
    Childs Nerv Syst; 2012 Sep; 28(9):1301-10. PubMed ID: 22872241
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Facial suture synostosis related to altered craniofacial bone remodeling induced by biomechanical forces and metabolic factors.
    Engstrom C; Kiliaridis S; Thilander B
    Prog Clin Biol Res; 1985; 187():379-91. PubMed ID: 4059241
    [No Abstract]   [Full Text] [Related]  

  • 26. Increased IGF-I and IGF-II mRNA and IGF-I peptide in fusing rat cranial sutures suggest evidence for a paracrine role of insulin-like growth factors in suture fusion.
    Bradley JP; Han VK; Roth DA; Levine JP; McCarthy JG; Longaker MT
    Plast Reconstr Surg; 1999 Jul; 104(1):129-38. PubMed ID: 10597685
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cranial deformation in craniosynostosis. A new explanation.
    Delashaw JB; Persing JA; Jane JA
    Neurosurg Clin N Am; 1991 Jul; 2(3):611-20. PubMed ID: 1821307
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A TWIST in the fate of human osteoblasts identifies signaling molecules involved in skull development.
    Jabs EW
    J Clin Invest; 2001 May; 107(9):1075-7. PubMed ID: 11342569
    [No Abstract]   [Full Text] [Related]  

  • 29. Cerebral Vein Malformations Result from Loss of Twist1 Expression and BMP Signaling from Skull Progenitor Cells and Dura.
    Tischfield MA; Robson CD; Gilette NM; Chim SM; Sofela FA; DeLisle MM; Gelber A; Barry BJ; MacKinnon S; Dagi LR; Nathans J; Engle EC
    Dev Cell; 2017 Sep; 42(5):445-461.e5. PubMed ID: 28844842
    [TBL] [Abstract][Full Text] [Related]  

  • 30. FGF-4 or FGF-2 administration induces apoptosis, collagen type I expression, and mineralization in the developing coronal suture.
    Mathijssen IM; van Leeuwen H; Vermeij-Keers C; Vaandrager JM
    J Craniofac Surg; 2001 Jul; 12(4):399-400. PubMed ID: 11482628
    [No Abstract]   [Full Text] [Related]  

  • 31. The effects of craniosynostosis on the brain with respect to intracranial pressure.
    Bristol RE; Lekovic GP; Rekate HL
    Semin Pediatr Neurol; 2004 Dec; 11(4):262-7. PubMed ID: 15828710
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of RANK-RANKL-OPG axis in cranial suture homeostasis.
    Lee JC; Spiguel L; Shenaq DS; Zhong M; Wietholt C; He TC; Reid RR
    J Craniofac Surg; 2011 Mar; 22(2):699-705. PubMed ID: 21415639
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genetics of craniosynostosis: review of the literature.
    Ciurea AV; Toader C
    J Med Life; 2009; 2(1):5-17. PubMed ID: 20108486
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Msx2 and Twist cooperatively control the development of the neural crest-derived skeletogenic mesenchyme of the murine skull vault.
    Ishii M; Merrill AE; Chan YS; Gitelman I; Rice DP; Sucov HM; Maxson RE
    Development; 2003 Dec; 130(24):6131-42. PubMed ID: 14597577
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cranial vault growth in craniosynostosis.
    Delashaw JB; Persing JA; Broaddus WC; Jane JA
    J Neurosurg; 1989 Feb; 70(2):159-65. PubMed ID: 2913214
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Somatic FGFR and TWIST mutations are not a common cause of isolated nonsyndromic single suture craniosynostosis.
    Anderson PJ; Cox TC; Roscioli T; Elakis G; Smithers L; David DJ; Powell B
    J Craniofac Surg; 2007 Mar; 18(2):312-4. PubMed ID: 17414280
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dura mater maintains rat cranial sutures in vitro by regulating suture cell proliferation and collagen production.
    Opperman LA; Chhabra A; Nolen AA; Bao Y; Ogle RC
    J Craniofac Genet Dev Biol; 1998; 18(3):150-8. PubMed ID: 9785219
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An autosomal dominant high bone mass phenotype in association with craniosynostosis in an extended family is caused by an LRP5 missense mutation.
    Kwee ML; Balemans W; Cleiren E; Gille JJ; Van Der Blij F; Sepers JM; Van Hul W
    J Bone Miner Res; 2005 Jul; 20(7):1254-60. PubMed ID: 15940380
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Skull growth after coronal suturectomy, periostectomy, and dural transection.
    Babler WJ; Persing JA; Persson KM; Winn HR; Jane JA; Rodeheaver GT
    J Neurosurg; 1982 Apr; 56(4):529-35. PubMed ID: 7062124
    [TBL] [Abstract][Full Text] [Related]  

  • 40. New insights into craniosynostosis.
    Flores-Sarnat L
    Semin Pediatr Neurol; 2002 Dec; 9(4):274-91. PubMed ID: 12523552
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.