These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 15797733)

  • 1. Helical crystallization on lipid nanotubes: streptavidin as a model protein.
    Dang TX; Farah SJ; Gast A; Robertson C; Carragher B; Egelman E; Wilson-Kubalek EM
    J Struct Biol; 2005 Apr; 150(1):90-9. PubMed ID: 15797733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipid nanotube formation from streptavidin-membrane binding.
    Liu H; Bachand GD; Kim H; Hayden CC; Abate EA; Sasaki DY
    Langmuir; 2008 Apr; 24(8):3686-9. PubMed ID: 18336048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Precisely programmed and robust 2D streptavidin nanoarrays by using periodical nanometer-scale wells embedded in DNA origami assembly.
    Kuzuya A; Kimura M; Numajiri K; Koshi N; Ohnishi T; Okada F; Komiyama M
    Chembiochem; 2009 Jul; 10(11):1811-5. PubMed ID: 19562789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supramolecular nanotube endo sensing for a guest protein.
    Kameta N; Masuda M; Mizuno G; Morii N; Shimizu T
    Small; 2008 May; 4(5):561-5. PubMed ID: 18384039
    [No Abstract]   [Full Text] [Related]  

  • 5. Self-assembly of chiral DNA nanotubes.
    Mitchell JC; Harris JR; Malo J; Bath J; Turberfield AJ
    J Am Chem Soc; 2004 Dec; 126(50):16342-3. PubMed ID: 15600334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Helical crystallization on nickel-lipid nanotubes: perfringolysin O as a model protein.
    Dang TX; Milligan RA; Tweten RK; Wilson-Kubalek EM
    J Struct Biol; 2005 Nov; 152(2):129-39. PubMed ID: 16242343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of biomolecular interaction between biotin and streptavidin on a self-assembled monolayer using magnetic nanoparticles.
    Arakaki A; Hideshima S; Nakagawa T; Niwa D; Tanaka T; Matsunaga T; Osaka T
    Biotechnol Bioeng; 2004 Nov; 88(4):543-6. PubMed ID: 15384052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of two- and three-dimensional streptavidin binding platforms for surface plasmon resonance spectroscopy studies of DNA hybridization and protein-DNA binding.
    Yang N; Su X; Tjong V; Knoll W
    Biosens Bioelectron; 2007 May; 22(11):2700-6. PubMed ID: 17223028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic and equilibrium binding analysis of protein-ligand interactions at poly(amidoamine) dendrimer monolayers.
    Hong MY; Lee D; Kim HS
    Anal Chem; 2005 Nov; 77(22):7326-34. PubMed ID: 16285682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA-carbon nanotube conjugates prepared by a versatile method using streptavidin-biotin recognition.
    Lyonnais S; Goux-Capes L; Escudé C; Cote D; Filoramo A; Bourgoin JP
    Small; 2008 Apr; 4(4):442-6. PubMed ID: 18383580
    [No Abstract]   [Full Text] [Related]  

  • 11. Heterotetramers formed by an S-layer-streptavidin fusion protein and core-streptavidin as a nanoarrayed template for biochip development.
    Huber C; Liu J; Egelseer EM; Moll D; Knoll W; Sleytr UB; Sára M
    Small; 2006 Jan; 2(1):142-50. PubMed ID: 17193570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-dimensional protein crystals on a solid substrate: effect of surface ligand concentration.
    Lou C; Wang Z; Wang SW
    Langmuir; 2007 Sep; 23(19):9752-9. PubMed ID: 17691830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular self-assembly of solid-supported protein crystals.
    Lou C; Shindel M; Graham L; Wang SW
    Langmuir; 2008 Aug; 24(15):8111-8. PubMed ID: 18605704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of highly dense aligned ribbons and transparent films of single-walled carbon nanotubes directly from carpets.
    Pint CL; Xu YQ; Pasquali M; Hauge RH
    ACS Nano; 2008 Sep; 2(9):1871-8. PubMed ID: 19206427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dip-pen nanolithography-assisted protein crystallization.
    Ielasi FS; Hirtz M; Sekula-Neuner S; Laue T; Fuchs H; Willaert RG
    J Am Chem Soc; 2015 Jan; 137(1):154-7. PubMed ID: 25525674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A freestanding membrane of highly ordered anodic ZrO2 nanotube arrays.
    Shin Y; Lee S
    Nanotechnology; 2009 Mar; 20(10):105301. PubMed ID: 19417516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic growth of single-crystalline V(2)O(5) nanowire arrays.
    Velazquez JM; Banerjee S
    Small; 2009 May; 5(9):1025-9. PubMed ID: 19235798
    [No Abstract]   [Full Text] [Related]  

  • 18. In situ organization of gold nanorods on mixed self-assembled-monolayer substrates.
    Zareie MH; Xu X; Cortie MB
    Small; 2007 Jan; 3(1):139-45. PubMed ID: 17294485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of hexagonal lattice Co/Pd multilayer nanodot arrays using colloidal lithography.
    Jeong JR; Kim S; Kim SH; Bland JA; Shin SC; Yang SM
    Small; 2007 Sep; 3(9):1529-33. PubMed ID: 17786896
    [No Abstract]   [Full Text] [Related]  

  • 20. Selection of carbon nanotubes with specific chiralities using helical assemblies of flavin mononucleotide.
    Ju SY; Doll J; Sharma I; Papadimitrakopoulos F
    Nat Nanotechnol; 2008 Jun; 3(6):356-62. PubMed ID: 18654547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.