BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 15797734)

  • 1. Prepore to pore transition of a cholesterol-dependent cytolysin visualized by electron microscopy.
    Dang TX; Hotze EM; Rouiller I; Tweten RK; Wilson-Kubalek EM
    J Struct Biol; 2005 Apr; 150(1):100-8. PubMed ID: 15797734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monomer-monomer interactions drive the prepore to pore conversion of a beta-barrel-forming cholesterol-dependent cytolysin.
    Hotze EM; Heuck AP; Czajkowsky DM; Shao Z; Johnson AE; Tweten RK
    J Biol Chem; 2002 Mar; 277(13):11597-605. PubMed ID: 11799121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arresting pore formation of a cholesterol-dependent cytolysin by disulfide trapping synchronizes the insertion of the transmembrane beta-sheet from a prepore intermediate.
    Hotze EM; Wilson-Kubalek EM; Rossjohn J; Parker MW; Johnson AE; Tweten RK
    J Biol Chem; 2001 Mar; 276(11):8261-8. PubMed ID: 11102453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mechanism of pore assembly for a cholesterol-dependent cytolysin: formation of a large prepore complex precedes the insertion of the transmembrane beta-hairpins.
    Shepard LA; Shatursky O; Johnson AE; Tweten RK
    Biochemistry; 2000 Aug; 39(33):10284-93. PubMed ID: 10956018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perfringolysin O: The Underrated Clostridium perfringens Toxin?
    Verherstraeten S; Goossens E; Valgaeren B; Pardon B; Timbermont L; Haesebrouck F; Ducatelle R; Deprez P; Wade KR; Tweten R; Van Immerseel F
    Toxins (Basel); 2015 May; 7(5):1702-21. PubMed ID: 26008232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fine-tuning of the stability of β-strands by Y181 in perfringolysin O directs the prepore to pore transition.
    Kulma M; Kacprzyk-Stokowiec A; Traczyk G; Kwiatkowska K; Dadlez M
    Biochim Biophys Acta Biomembr; 2019 Jan; 1861(1):110-122. PubMed ID: 30463694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vertical collapse of a cytolysin prepore moves its transmembrane beta-hairpins to the membrane.
    Czajkowsky DM; Hotze EM; Shao Z; Tweten RK
    EMBO J; 2004 Aug; 23(16):3206-15. PubMed ID: 15297878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural insights into the membrane-anchoring mechanism of a cholesterol-dependent cytolysin.
    Ramachandran R; Heuck AP; Tweten RK; Johnson AE
    Nat Struct Biol; 2002 Nov; 9(11):823-7. PubMed ID: 12368903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An intermolecular electrostatic interaction controls the prepore-to-pore transition in a cholesterol-dependent cytolysin.
    Wade KR; Hotze EM; Kuiper MJ; Morton CJ; Parker MW; Tweten RK
    Proc Natl Acad Sci U S A; 2015 Feb; 112(7):2204-9. PubMed ID: 25646411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational changes that effect oligomerization and initiate pore formation are triggered throughout perfringolysin O upon binding to cholesterol.
    Heuck AP; Savva CG; Holzenburg A; Johnson AE
    J Biol Chem; 2007 Aug; 282(31):22629-37. PubMed ID: 17553799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of a membrane-spanning domain of the thiol-activated pore-forming toxin Clostridium perfringens perfringolysin O: an alpha-helical to beta-sheet transition identified by fluorescence spectroscopy.
    Shepard LA; Heuck AP; Hamman BD; Rossjohn J; Parker MW; Ryan KR; Johnson AE; Tweten RK
    Biochemistry; 1998 Oct; 37(41):14563-74. PubMed ID: 9772185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decreasing Transmembrane Segment Length Greatly Decreases Perfringolysin O Pore Size.
    Lin Q; Wang T; Li H; London E
    J Membr Biol; 2015 Jun; 248(3):517-27. PubMed ID: 25850715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disulfide-bond scanning reveals assembly state and β-strand tilt angle of the PFO β-barrel.
    Sato TK; Tweten RK; Johnson AE
    Nat Chem Biol; 2013 Jun; 9(6):383-9. PubMed ID: 23563525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The projection structure of perfringolysin O (Clostridium perfringens theta-toxin).
    Olofsson A; Hebert H; Thelestam M
    FEBS Lett; 1993 Mar; 319(1-2):125-7. PubMed ID: 8454043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The cholesterol-dependent cytolysins.
    Tweten RK; Parker MW; Johnson AE
    Curr Top Microbiol Immunol; 2001; 257():15-33. PubMed ID: 11417120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Intermolecular π-Stacking Interaction Drives Conformational Changes Necessary to β-Barrel Formation in a Pore-Forming Toxin.
    Burns JR; Morton CJ; Parker MW; Tweten RK
    mBio; 2019 Jul; 10(4):. PubMed ID: 31266869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mechanism of membrane insertion for a cholesterol-dependent cytolysin: a novel paradigm for pore-forming toxins.
    Shatursky O; Heuck AP; Shepard LA; Rossjohn J; Parker MW; Johnson AE; Tweten RK
    Cell; 1999 Oct; 99(3):293-9. PubMed ID: 10555145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The domains of a cholesterol-dependent cytolysin undergo a major FRET-detected rearrangement during pore formation.
    Ramachandran R; Tweten RK; Johnson AE
    Proc Natl Acad Sci U S A; 2005 May; 102(20):7139-44. PubMed ID: 15878993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Helical crystallization on nickel-lipid nanotubes: perfringolysin O as a model protein.
    Dang TX; Milligan RA; Tweten RK; Wilson-Kubalek EM
    J Struct Biol; 2005 Nov; 152(2):129-39. PubMed ID: 16242343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assembly and topography of the prepore complex in cholesterol-dependent cytolysins.
    Heuck AP; Tweten RK; Johnson AE
    J Biol Chem; 2003 Aug; 278(33):31218-25. PubMed ID: 12777381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.