These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 15797734)

  • 21. Phospholipid hydrolysis caused by Clostridium perfringens α-toxin facilitates the targeting of perfringolysin O to membrane bilayers.
    Moe PC; Heuck AP
    Biochemistry; 2010 Nov; 49(44):9498-507. PubMed ID: 20886855
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Single molecule compression reveals intra-protein forces drive cytotoxin pore formation.
    Czajkowsky DM; Sun J; Shao Z
    Elife; 2015 Dec; 4():e08421. PubMed ID: 26652734
    [TBL] [Abstract][Full Text] [Related]  

  • 23. R468A mutation in perfringolysin O destabilizes toxin structure and induces membrane fusion.
    Kulma M; Kacprzyk-Stokowiec A; Kwiatkowska K; Traczyk G; Sobota A; Dadlez M
    Biochim Biophys Acta Biomembr; 2017 Jun; 1859(6):1075-1088. PubMed ID: 28263714
    [TBL] [Abstract][Full Text] [Related]  

  • 24. How interaction of perfringolysin O with membranes is controlled by sterol structure, lipid structure, and physiological low pH: insights into the origin of perfringolysin O-lipid raft interaction.
    Nelson LD; Johnson AE; London E
    J Biol Chem; 2008 Feb; 283(8):4632-42. PubMed ID: 18089559
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Perfringolysin O structure and mechanism of pore formation as a paradigm for cholesterol-dependent cytolysins.
    Johnson BB; Heuck AP
    Subcell Biochem; 2014; 80():63-81. PubMed ID: 24798008
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interaction of Cholesterol with Perfringolysin O: What Have We Learned from Functional Analysis?
    Savinov SN; Heuck AP
    Toxins (Basel); 2017 Nov; 9(12):. PubMed ID: 29168745
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Key Motif in the Cholesterol-Dependent Cytolysins Reveals a Large Family of Related Proteins.
    Evans JC; Johnstone BA; Lawrence SL; Morton CJ; Christie MP; Parker MW; Tweten RK
    mBio; 2020 Sep; 11(5):. PubMed ID: 32994330
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CryoEM structures of membrane pore and prepore complex reveal cytolytic mechanism of Pneumolysin.
    van Pee K; Neuhaus A; D'Imprima E; Mills DJ; Kühlbrandt W; Yildiz Ö
    Elife; 2017 Mar; 6():. PubMed ID: 28323617
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Single-molecule analysis of the entire perfringolysin O pore formation pathway.
    McGuinness C; Walsh JC; Bayly-Jones C; Dunstone MA; Christie MP; Morton CJ; Parker MW; Böcking T
    Elife; 2022 Aug; 11():. PubMed ID: 36000711
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modifications in perfringolysin O domain 4 alter the cholesterol concentration threshold required for binding.
    Johnson BB; Moe PC; Wang D; Rossi K; Trigatti BL; Heuck AP
    Biochemistry; 2012 Apr; 51(16):3373-82. PubMed ID: 22482748
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Crucial role of perfringolysin O D1 domain in orchestrating structural transitions leading to membrane-perforating pores: a hydrogen-deuterium exchange study.
    Kacprzyk-Stokowiec A; Kulma M; Traczyk G; Kwiatkowska K; Sobota A; Dadlez M
    J Biol Chem; 2014 Oct; 289(41):28738-52. PubMed ID: 25164812
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Monitoring the kinetics of the pH-driven transition of the anthrax toxin prepore to the pore by biolayer interferometry and surface plasmon resonance.
    Naik S; Brock S; Akkaladevi N; Tally J; McGinn-Straub W; Zhang N; Gao P; Gogol EP; Pentelute BL; Collier RJ; Fisher MT
    Biochemistry; 2013 Sep; 52(37):6335-47. PubMed ID: 23964683
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The cholesterol-dependent cytolysin signature motif: a critical element in the allosteric pathway that couples membrane binding to pore assembly.
    Dowd KJ; Farrand AJ; Tweten RK
    PLoS Pathog; 2012; 8(7):e1002787. PubMed ID: 22792065
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Toxin structure: part of a hole?
    Bayley H
    Curr Biol; 1997 Dec; 7(12):R763-7. PubMed ID: 9382829
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Perfringolysin O association with ordered lipid domains: implications for transmembrane protein raft affinity.
    Nelson LD; Chiantia S; London E
    Biophys J; 2010 Nov; 99(10):3255-63. PubMed ID: 21081073
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The cholesterol-dependent cytolysin family of gram-positive bacterial toxins.
    Heuck AP; Moe PC; Johnson BB
    Subcell Biochem; 2010; 51():551-77. PubMed ID: 20213558
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Directly Observing the Lipid-Dependent Self-Assembly and Pore-Forming Mechanism of the Cytolytic Toxin Listeriolysin O.
    Mulvihill E; van Pee K; Mari SA; Müller DJ; Yildiz Ö
    Nano Lett; 2015 Oct; 15(10):6965-73. PubMed ID: 26302195
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of a prepore large-complex stage in the mechanism of action of Clostridium perfringens enterotoxin.
    Smedley JG; Uzal FA; McClane BA
    Infect Immun; 2007 May; 75(5):2381-90. PubMed ID: 17307943
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evidence for a prepore stage in the action of Clostridium perfringens epsilon toxin.
    Robertson SL; Li J; Uzal FA; McClane BA
    PLoS One; 2011; 6(7):e22053. PubMed ID: 21814565
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interaction of theta-toxin (perfringolysin O), a cholesterol-binding cytolysin, with liposomal membranes: change in the aromatic side chains upon binding and insertion.
    Nakamura M; Sekino N; Iwamoto M; Ohno-Iwashita Y
    Biochemistry; 1995 May; 34(19):6513-20. PubMed ID: 7756282
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.