These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 15797770)

  • 1. Recognizing partially visible objects.
    Servos P; Olds ES; Planetta PJ; Keith Humphrey G
    Vision Res; 2005 Jun; 45(14):1807-14. PubMed ID: 15797770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cerebral regions and hemispheric specialization for processing spatial frequencies during natural scene recognition. An event-related fMRI study.
    Peyrin C; Baciu M; Segebarth C; Marendaz C
    Neuroimage; 2004 Oct; 23(2):698-707. PubMed ID: 15488419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The recognition of partially visible natural objects in the presence and absence of their occluders.
    Johnson JS; Olshausen BA
    Vision Res; 2005 Nov; 45(25-26):3262-76. PubMed ID: 16043208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatiotemporal dynamics of human object recognition processing: an integrated high-density electrical mapping and functional imaging study of "closure" processes.
    Sehatpour P; Molholm S; Javitt DC; Foxe JJ
    Neuroimage; 2006 Jan; 29(2):605-18. PubMed ID: 16168676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low spatial frequency filtering modulates early brain processing of affective complex pictures.
    Alorda C; Serrano-Pedraza I; Campos-Bueno JJ; Sierra-Vázquez V; Montoya P
    Neuropsychologia; 2007 Nov; 45(14):3223-33. PubMed ID: 17681356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural correlates of spatial frequency processing: A neuropsychological approach.
    Peyrin C; Chokron S; Guyader N; Gout O; Moret J; Marendaz C
    Brain Res; 2006 Feb; 1073-1074():1-10. PubMed ID: 16443206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hemispheric specialization of human inferior temporal cortex during coarse-to-fine and fine-to-coarse analysis of natural visual scenes.
    Peyrin C; Schwartz S; Seghier M; Michel C; Landis T; Vuilleumier P
    Neuroimage; 2005 Nov; 28(2):464-73. PubMed ID: 15993630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Residual abilities in age-related macular degeneration to process spatial frequencies during natural scene categorization.
    Musel B; Hera R; Chokron S; Alleysson D; Chiquet C; Romanet JP; Guyader N; Peyrin C
    Vis Neurosci; 2011 Nov; 28(6):529-41. PubMed ID: 22192508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of face spatial frequencies on cortical processing revealed by magnetoencephalography.
    Hsiao FJ; Hsieh JC; Lin YY; Chang Y
    Neurosci Lett; 2005 May 20-27; 380(1-2):54-9. PubMed ID: 15854750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Top-down facilitation of visual object recognition: object-based and context-based contributions.
    Fenske MJ; Aminoff E; Gronau N; Bar M
    Prog Brain Res; 2006; 155():3-21. PubMed ID: 17027376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of microsaccades by spatial frequency during object categorization.
    Craddock M; Oppermann F; Müller MM; Martinovic J
    Vision Res; 2017 Jan; 130():48-56. PubMed ID: 27876511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of multisensory memories in unisensory object discrimination.
    Lehmann S; Murray MM
    Brain Res Cogn Brain Res; 2005 Jul; 24(2):326-34. PubMed ID: 15993770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Qualitative differences in the representation of spatial relations for different object classes.
    Cooper EE; Brooks BE
    J Exp Psychol Hum Percept Perform; 2004 Apr; 30(2):243-56. PubMed ID: 15053686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gestalts are more closely associated with performance on a discrimination task than are component stimuli.
    King DL
    Am J Psychol; 1990; 103(1):37-52. PubMed ID: 2309976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A cortical mechanism for triggering top-down facilitation in visual object recognition.
    Bar M
    J Cogn Neurosci; 2003 May; 15(4):600-9. PubMed ID: 12803970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contour grouping: closure effects are explained by good continuation and proximity.
    Tversky T; Geisler WS; Perry JS
    Vision Res; 2004 Nov; 44(24):2769-77. PubMed ID: 15342221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early ERP components differentially extract facial features: evidence for spatial frequency-and-contrast detectors.
    Nakashima T; Kaneko K; Goto Y; Abe T; Mitsudo T; Ogata K; Makinouchi A; Tobimatsu S
    Neurosci Res; 2008 Dec; 62(4):225-35. PubMed ID: 18809442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tracking changes in spatial frequency sensitivity during natural image processing in school age: an event-related potential study.
    Rokszin AA; Győri-Dani D; Bácsi J; Nyúl LG; Csifcsák G
    J Exp Child Psychol; 2018 Feb; 166():664-678. PubMed ID: 29128609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decreased spatial frequency sensitivities for processing faces in male patients with chronic schizophrenia.
    Obayashi C; Nakashima T; Onitsuka T; Maekawa T; Hirano Y; Hirano S; Oribe N; Kaneko K; Kanba S; Tobimatsu S
    Clin Neurophysiol; 2009 Aug; 120(8):1525-33. PubMed ID: 19632149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated contextual representation for objects' identities and their locations.
    Gronau N; Neta M; Bar M
    J Cogn Neurosci; 2008 Mar; 20(3):371-88. PubMed ID: 18004950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.