BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 15798187)

  • 1. Genome-wide prediction and analysis of yeast RNase III-dependent snoRNA processing signals.
    Ghazal G; Ge D; Gervais-Bird J; Gagnon J; Abou Elela S
    Mol Cell Biol; 2005 Apr; 25(8):2981-94. PubMed ID: 15798187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Seven novel methylation guide small nucleolar RNAs are processed from a common polycistronic transcript by Rat1p and RNase III in yeast.
    Qu LH; Henras A; Lu YJ; Zhou H; Zhou WX; Zhu YQ; Zhao J; Henry Y; Caizergues-Ferrer M; Bachellerie JP
    Mol Cell Biol; 1999 Feb; 19(2):1144-58. PubMed ID: 9891049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intronic snoRNA biosynthesis in Saccharomyces cerevisiae depends on the lariat-debranching enzyme: intron length effects and activity of a precursor snoRNA.
    Ooi SL; Samarsky DA; Fournier MJ; Boeke JD
    RNA; 1998 Sep; 4(9):1096-110. PubMed ID: 9740128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of a novel element required for processing of intron-encoded box C/D small nucleolar RNAs in Saccharomyces cerevisiae.
    Villa T; Ceradini F; Bozzoni I
    Mol Cell Biol; 2000 Feb; 20(4):1311-20. PubMed ID: 10648617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The roles of endonucleolytic cleavage and exonucleolytic digestion in the 5'-end processing of S. cerevisiae box C/D snoRNAs.
    Lee CY; Lee A; Chanfreau G
    RNA; 2003 Nov; 9(11):1362-70. PubMed ID: 14561886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The position of yeast snoRNA-coding regions within host introns is essential for their biosynthesis and for efficient splicing of the host pre-mRNA.
    Vincenti S; De Chiara V; Bozzoni I; Presutti C
    RNA; 2007 Jan; 13(1):138-50. PubMed ID: 17135484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Release of U18 snoRNA from its host intron requires interaction of Nop1p with the Rnt1p endonuclease.
    Giorgi C; Fatica A; Nagel R; Bozzoni I
    EMBO J; 2001 Dec; 20(23):6856-65. PubMed ID: 11726521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Yeast snoRNA accumulation relies on a cleavage-dependent/polyadenylation-independent 3'-processing apparatus.
    Fatica A; Morlando M; Bozzoni I
    EMBO J; 2000 Nov; 19(22):6218-29. PubMed ID: 11080167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A cotranscriptional model for 3'-end processing of the Saccharomyces cerevisiae pre-ribosomal RNA precursor.
    Henras AK; Bertrand E; Chanfreau G
    RNA; 2004 Oct; 10(10):1572-85. PubMed ID: 15337846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Paralog-Specific Functions of
    Palumbo RJ; Fuchs G; Lutz S; Curcio MJ
    G3 (Bethesda); 2017 Feb; 7(2):591-606. PubMed ID: 28007835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imp3 unfolds stem structures in pre-rRNA and U3 snoRNA to form a duplex essential for small subunit processing.
    Shah BN; Liu X; Correll CC
    RNA; 2013 Oct; 19(10):1372-83. PubMed ID: 23980203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Yeast exosome mutants accumulate 3'-extended polyadenylated forms of U4 small nuclear RNA and small nucleolar RNAs.
    van Hoof A; Lennertz P; Parker R
    Mol Cell Biol; 2000 Jan; 20(2):441-52. PubMed ID: 10611222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The RNA catabolic enzymes Rex4p, Rnt1p, and Dbr1p show genetic interaction with trans-acting factors involved in processing of ITS1 in Saccharomyces cerevisiae pre-rRNA.
    Faber AW; Vos JC; Vos HR; Ghazal G; Elela SA; Raué HA
    RNA; 2004 Dec; 10(12):1946-56. PubMed ID: 15525710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A conserved major groove antideterminant for Saccharomyces cerevisiae RNase III recognition.
    Sam M; Henras AK; Chanfreau G
    Biochemistry; 2005 Mar; 44(11):4181-7. PubMed ID: 15766245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Yeast RNase III as a key processing enzyme in small nucleolar RNAs metabolism.
    Chanfreau G; Legrain P; Jacquier A
    J Mol Biol; 1998 Dec; 284(4):975-88. PubMed ID: 9837720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conservation of RNase III processing pathways and specificity in hemiascomycetes.
    Chanfreau G
    Eukaryot Cell; 2003 Oct; 2(5):901-9. PubMed ID: 14555472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of the 3' external transcribed spacer in yeast pre-rRNA processing.
    Allmang C; Tollervey D
    J Mol Biol; 1998 Apr; 278(1):67-78. PubMed ID: 9571034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A physical interaction between Gar1p and Rnt1pi is required for the nuclear import of H/ACA small nucleolar RNA-associated proteins.
    Tremblay A; Lamontagne B; Catala M; Yam Y; Larose S; Good L; Elela SA
    Mol Cell Biol; 2002 Jul; 22(13):4792-802. PubMed ID: 12052886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of an AAGU tetraloop and its contribution to substrate selection by yeast RNase III.
    Gaudin C; Ghazal G; Yoshizawa S; Elela SA; Fourmy D
    J Mol Biol; 2006 Oct; 363(2):322-31. PubMed ID: 16979185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular requirements for duplex recognition and cleavage by eukaryotic RNase III: discovery of an RNA-dependent DNA cleavage activity of yeast Rnt1p.
    Lamontagne B; Hannoush RN; Damha MJ; Abou Elela S
    J Mol Biol; 2004 Apr; 338(2):401-18. PubMed ID: 15066440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.