BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 15798247)

  • 1. Optimum electrode configuration for detection of leg movement using bio-impedance.
    Song CG; Kim SC; Nam KC; Kim DW
    Physiol Meas; 2005 Apr; 26(2):S59-68. PubMed ID: 15798247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new approach for detection of leg movement using segmental electrical impedance changes.
    Song CG; Seo JH; Kim KS; Youn DY; Kim DW
    J Med Eng Technol; 2005; 29(1):42-6. PubMed ID: 15764382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimum electrode configuration for detection of arm movement using bio-impedance.
    Kim SC; Nam KC; Kim DW; Ryu CY; Kim YH; Kim JC
    Med Biol Eng Comput; 2003 Mar; 41(2):141-5. PubMed ID: 12691433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging of conductivity changes and electrode movement in EIT.
    Soleimani M; Gómez-Laberge C; Adler A
    Physiol Meas; 2006 May; 27(5):S103-13. PubMed ID: 16636402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of the optimum level of electrode placement for the evaluation of absolute lung resistivity with the Mk3.5 EIT system.
    Nebuya S; Noshiro M; Yonemoto A; Tateno S; Brown BH; Smallwood RH; Milnes P
    Physiol Meas; 2006 May; 27(5):S129-37. PubMed ID: 16636404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of ankle joint position and electrode placement on the estimation of the antagonistic moment during maximal plantarflexion.
    Mademli L; Arampatzis A; Morey-Klapsing G; Brüggemann GP
    J Electromyogr Kinesiol; 2004 Oct; 14(5):591-7. PubMed ID: 15301777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of ankle bracing on motion of the knee and the hip joint during trunk rotation tasks.
    Santos MJ; McIntire K; Foecking J; Liu W
    Clin Biomech (Bristol, Avon); 2004 Nov; 19(9):964-71. PubMed ID: 15475130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimum conductive fabric sensor sites for evaluating the status of knee joint movements using bio-impedance.
    Lee BW; Lee C; Kim J; Lee M
    Biomed Eng Online; 2011 Jun; 10():48. PubMed ID: 21645353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of emboli in vessels using electrical impedance measurements--phantom and electrodes.
    Nebuya S; Noshiro M; Brown BH; Smallwood RH; Milnes P
    Physiol Meas; 2005 Apr; 26(2):S111-8. PubMed ID: 15798224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-leg hop testing following fatiguing exercise: reliability and biomechanical analysis.
    Augustsson J; Thomeé R; Lindén C; Folkesson M; Tranberg R; Karlsson J
    Scand J Med Sci Sports; 2006 Apr; 16(2):111-20. PubMed ID: 16533349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new method for measuring passive length-tension properties of human gastrocnemius muscle in vivo.
    Hoang PD; Gorman RB; Todd G; Gandevia SC; Herbert RD
    J Biomech; 2005 Jun; 38(6):1333-41. PubMed ID: 15863118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional instability of the ankle: differences in patterns of ankle and knee movement prior to and post landing in a single leg jump.
    Caulfield BM; Garrett M
    Int J Sports Med; 2002 Jan; 23(1):64-8. PubMed ID: 11774069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leg and joint stiffness in human hopping.
    Kuitunen S; Ogiso K; Komi PV
    Scand J Med Sci Sports; 2011 Dec; 21(6):e159-67. PubMed ID: 22126723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Force-velocity, force-power relationships of bilateral and unilateral leg multi-joint movements in young and elderly women.
    Yamauchi J; Mishima C; Nakayama S; Ishii N
    J Biomech; 2009 Sep; 42(13):2151-7. PubMed ID: 19647259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new approach to detecting asymmetries in gait.
    Shorter KA; Polk JD; Rosengren KS; Hsiao-Wecksler ET
    Clin Biomech (Bristol, Avon); 2008 May; 23(4):459-67. PubMed ID: 18242805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mobile ankle and knee perturbator.
    Andersen JB; Sinkjaer T
    IEEE Trans Biomed Eng; 2003 Oct; 50(10):1208-11. PubMed ID: 14560775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional calibration procedure for 3D knee joint angle description using inertial sensors.
    Favre J; Aissaoui R; Jolles BM; de Guise JA; Aminian K
    J Biomech; 2009 Oct; 42(14):2330-5. PubMed ID: 19665712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differences in peak knee valgus angles between individuals with high and low Q-angles during a single limb squat.
    Pantano KJ; White SC; Gilchrist LA; Leddy J
    Clin Biomech (Bristol, Avon); 2005 Nov; 20(9):966-72. PubMed ID: 16051403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimum design of electrode structure and parameters in electrical impedance tomography.
    Yan W; Hong S; Chaoshi R
    Physiol Meas; 2006 Mar; 27(3):291-306. PubMed ID: 16462015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrocardiographic motion artifact versus electrode impedance.
    Wiese SR; Anheier P; Connemara RD; Mollner AT; Neils TF; Kahn JA; Webster JG
    IEEE Trans Biomed Eng; 2005 Jan; 52(1):136-9. PubMed ID: 15651575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.