BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 15798309)

  • 1. Modelling and validation of spectral reflectance for the colon.
    Hidović-Rowe D; Claridge E
    Phys Med Biol; 2005 Mar; 50(6):1071-93. PubMed ID: 15798309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling.
    Gebhart SC; Lin WC; Mahadevan-Jansen A
    Phys Med Biol; 2006 Apr; 51(8):2011-27. PubMed ID: 16585842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model based inversion for deriving maps of histological parameters characteristic of cancer from ex-vivo multispectral images of the colon.
    Claridge E; Hidović-Rowe D
    IEEE Trans Med Imaging; 2014 Apr; 33(4):822-35. PubMed ID: 24239991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Superficial bladder cancer detection using diffuse reflectance spectral ratio R540/R575 of oxygenated hemoglobin bands].
    Wei HJ; Xing D; Wu GY; Lu JJ; Wu RH; Gu HM; He BH; Chen XM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Nov; 28(11):2721-5. PubMed ID: 19271527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative analysis of multi-spectral fundus images.
    Styles IB; Calcagni A; Claridge E; Orihuela-Espina F; Gibson JM
    Med Image Anal; 2006 Aug; 10(4):578-97. PubMed ID: 16861030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte Carlo simulation of cutaneous reflectance and fluorescence measurements--the effect of melanin contents and localization.
    Chen R; Huang Z; Lui H; Hamzavi I; McLean DI; Xie S; Zeng H
    J Photochem Photobiol B; 2007 Mar; 86(3):219-26. PubMed ID: 17157523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diagnosis of breast cancer using diffuse reflectance spectroscopy: Comparison of a Monte Carlo versus partial least squares analysis based feature extraction technique.
    Zhu C; Palmer GM; Breslin TM; Harter J; Ramanujam N
    Lasers Surg Med; 2006 Aug; 38(7):714-24. PubMed ID: 16799981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of regional hemoglobin concentration in biological tissues using diffuse reflectance spectroscopy with a novel spectral interpretation algorithm.
    Chen P; Fernald B; Lin W
    Phys Med Biol; 2011 Jul; 56(13):3985-4000. PubMed ID: 21666291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reflectance spectrometry of normal and bruised human skins: experiments and modeling.
    Kim O; McMurdy J; Lines C; Duffy S; Crawford G; Alber M
    Physiol Meas; 2012 Feb; 33(2):159-75. PubMed ID: 22258326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid and accurate estimation of blood saturation, melanin content, and epidermis thickness from spectral diffuse reflectance.
    Yudovsky D; Pilon L
    Appl Opt; 2010 Apr; 49(10):1707-19. PubMed ID: 20357850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simple two-layer reflectance model for biological tissue applications: lower absorbing layer.
    Zonios G; Dimou A
    Appl Opt; 2010 Sep; 49(27):5026-31. PubMed ID: 20856274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Autofluorescence and diffuse reflectance spectroscopy for oral oncology.
    de Veld DC; Skurichina M; Witjes MJ; Duin RP; Sterenborg HJ; Roodenburg JL
    Lasers Surg Med; 2005 Jun; 36(5):356-64. PubMed ID: 15856507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved model for myocardial diffuse reflectance spectra by including mitochondrial cytochrome aa3, methemoglobin, and inhomogenously distributed RBC.
    Lindbergh T; Häggblad E; Ahn H; Göran Salerud E; Larsson M; Strömberg T
    J Biophotonics; 2011 Apr; 4(4):268-76. PubMed ID: 20661995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of analyte-irrelevant variations in near-infrared tissue spectra.
    Yang Y; Shoer L; Soyemi OO; Landry MR; Soller BR
    Appl Spectrosc; 2006 Sep; 60(9):1070-7. PubMed ID: 17002833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Monte Carlo study of the chlorophyll fluorescence emission and its effect on the leaf spectral reflectance and transmittance under various conditions.
    Susila P; Naus J
    Photochem Photobiol Sci; 2007 Aug; 6(8):894-902. PubMed ID: 17668120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic and least squares algorithms for estimating spectral EIS parameters of prostatic tissues.
    Halter RJ; Hartov A; Paulsen KD; Schned A; Heaney J
    Physiol Meas; 2008 Jun; 29(6):S111-23. PubMed ID: 18544804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using scattering and absorption spectra as MCR-hard model constraints for diffuse reflectance measurements of tablets.
    Kessler W; Oelkrug D; Kessler R
    Anal Chim Acta; 2009 May; 642(1-2):127-34. PubMed ID: 19427467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A general computational method for converting normal spectra into derivative spectra.
    Yeow YL; Leong YK
    Appl Spectrosc; 2005 May; 59(5):584-92. PubMed ID: 15969803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal coagulation-induced changes of the optical properties of normal and adenomatous human colon tissues in vitro in the spectral range 400-1,100 nm.
    Ao H; Xing D; Wei H; Gu H; Wu G; Lu J
    Phys Med Biol; 2008 Apr; 53(8):2197-206. PubMed ID: 18385526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reflectance spectra of pigmented and nonpigmented skin in the UV spectral region.
    Nielsen KP; Lu Z; Juzenas P; Stamnes JJ; Stamnes K; Moan J
    Photochem Photobiol; 2004; 80(3):450-5. PubMed ID: 15623329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.