These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 15799063)
1. Experimental measurement of extravascular parenchymal BOLD effects and tissue oxygen extraction fractions using multi-echo VASO fMRI at 1.5 and 3.0 T. Lu H; van Zijl PC Magn Reson Med; 2005 Apr; 53(4):808-16. PubMed ID: 15799063 [TBL] [Abstract][Full Text] [Related]
2. Measurement of parenchymal extravascular R2* and tissue oxygen extraction fraction using multi-echo vascular space occupancy MRI at 7 T. Cheng Y; van Zijl PC; Hua J NMR Biomed; 2015 Feb; 28(2):264-71. PubMed ID: 25521948 [TBL] [Abstract][Full Text] [Related]
3. Oxygenation and hematocrit dependence of transverse relaxation rates of blood at 3T. Zhao JM; Clingman CS; Närväinen MJ; Kauppinen RA; van Zijl PC Magn Reson Med; 2007 Sep; 58(3):592-7. PubMed ID: 17763354 [TBL] [Abstract][Full Text] [Related]
4. Microvascular BOLD contribution at 4 and 7 T in the human brain: gradient-echo and spin-echo fMRI with suppression of blood effects. Duong TQ; Yacoub E; Adriany G; Hu X; Ugurbil K; Kim SG Magn Reson Med; 2003 Jun; 49(6):1019-27. PubMed ID: 12768579 [TBL] [Abstract][Full Text] [Related]
5. Diffusion-weighted spin-echo fMRI at 9.4 T: microvascular/tissue contribution to BOLD signal changes. Lee SP; Silva AC; Ugurbil K; Kim SG Magn Reson Med; 1999 Nov; 42(5):919-28. PubMed ID: 10542351 [TBL] [Abstract][Full Text] [Related]
6. Functional magnetic resonance imaging based on changes in vascular space occupancy. Lu H; Golay X; Pekar JJ; Van Zijl PC Magn Reson Med; 2003 Aug; 50(2):263-74. PubMed ID: 12876702 [TBL] [Abstract][Full Text] [Related]
7. A functional magnetic resonance imaging technique based on nulling extravascular gray matter signal. Shen Y; Kauppinen RA; Vidyasagar R; Golay X J Cereb Blood Flow Metab; 2009 Jan; 29(1):144-56. PubMed ID: 18728677 [TBL] [Abstract][Full Text] [Related]
8. Hypercapnic normalization of BOLD fMRI: comparison across field strengths and pulse sequences. Cohen ER; Rostrup E; Sidaros K; Lund TE; Paulson OB; Ugurbil K; Kim SG Neuroimage; 2004 Oct; 23(2):613-24. PubMed ID: 15488411 [TBL] [Abstract][Full Text] [Related]
9. On the numerically predicted spatial BOLD fMRI specificity for spin echo sequences. Pflugfelder D; Vahedipour K; Uludağ K; Shah NJ; Stöcker T Magn Reson Imaging; 2011 Nov; 29(9):1195-204. PubMed ID: 21917392 [TBL] [Abstract][Full Text] [Related]
10. Effects of oxygen saturation on BOLD and arterial spin labelling perfusion fMRI signals studied in a motor activation task. Tuunanen PI; Kauppinen RA Neuroimage; 2006 Mar; 30(1):102-9. PubMed ID: 16243545 [TBL] [Abstract][Full Text] [Related]
11. Spin-echo fMRI in humans using high spatial resolutions and high magnetic fields. Yacoub E; Duong TQ; Van De Moortele PF; Lindquist M; Adriany G; Kim SG; Uğurbil K; Hu X Magn Reson Med; 2003 Apr; 49(4):655-64. PubMed ID: 12652536 [TBL] [Abstract][Full Text] [Related]
12. Quantifying the intra- and extravascular contributions to spin-echo fMRI at 3 T. Jochimsen TH; Norris DG; Mildner T; Möller HE Magn Reson Med; 2004 Oct; 52(4):724-32. PubMed ID: 15389950 [TBL] [Abstract][Full Text] [Related]
13. Quantitative differentiation between BOLD models in fMRI. Hoogenraad FG; Pouwels PJ; Hofman MB; Reichenbach JR; Sprenger M; Haacke EM Magn Reson Med; 2001 Feb; 45(2):233-46. PubMed ID: 11180431 [TBL] [Abstract][Full Text] [Related]
14. The BOLD response and vascular reactivity during visual stimulation in the presence of hypoxic hypoxia. Ho YC; Vidyasagar R; Shen Y; Balanos GM; Golay X; Kauppinen RA Neuroimage; 2008 Jun; 41(2):179-88. PubMed ID: 18396415 [TBL] [Abstract][Full Text] [Related]
15. Spatial sensitivity and temporal response of spin echo and gradient echo bold contrast at 3 T using peak hemodynamic activation time. Hulvershorn J; Bloy L; Gualtieri EE; Leigh JS; Elliott MA Neuroimage; 2005 Jan; 24(1):216-23. PubMed ID: 15588613 [TBL] [Abstract][Full Text] [Related]
16. Detecting resting-state brain activity by spontaneous cerebral blood volume fluctuations using whole brain vascular space occupancy imaging. Miao X; Gu H; Yan L; Lu H; Wang DJ; Zhou XJ; Zhuo Y; Yang Y Neuroimage; 2014 Jan; 84():575-84. PubMed ID: 24055705 [TBL] [Abstract][Full Text] [Related]
17. Physiological origin of low-frequency drift in blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI). Yan L; Zhuo Y; Ye Y; Xie SX; An J; Aguirre GK; Wang J Magn Reson Med; 2009 Apr; 61(4):819-27. PubMed ID: 19189286 [TBL] [Abstract][Full Text] [Related]
18. Blood oxygenation level-dependent (BOLD)-based techniques for the quantification of brain hemodynamic and metabolic properties - theoretical models and experimental approaches. Yablonskiy DA; Sukstanskii AL; He X NMR Biomed; 2013 Aug; 26(8):963-86. PubMed ID: 22927123 [TBL] [Abstract][Full Text] [Related]
19. Cortical layer-dependent BOLD and CBV responses measured by spin-echo and gradient-echo fMRI: insights into hemodynamic regulation. Zhao F; Wang P; Hendrich K; Ugurbil K; Kim SG Neuroimage; 2006 May; 30(4):1149-60. PubMed ID: 16414284 [TBL] [Abstract][Full Text] [Related]
20. Functional magnetic resonance imaging of the human brain based on signal enhancement by extravascular protons (SEEP fMRI). Stroman PW; Tomanek B; Krause V; Frankenstein UN; Malisza KL Magn Reson Med; 2003 Mar; 49(3):433-9. PubMed ID: 12594745 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]