These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 15799472)

  • 1. Testing the pairwise additive potential approximation using DFT: coadsorption of CO and N on Rh (100).
    Curulla Ferré D; van Bavel AP; Niemantsverdriet JW
    Chemphyschem; 2005 Mar; 6(3):473-80. PubMed ID: 15799472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of carbon on the adsorption of CO on a Rh(100) single crystal.
    Nieskens DL; Jansen MM; van Bavel AP; Curulla-Ferré D; Niemantsverdriet JW
    Phys Chem Chem Phys; 2006 Feb; 8(5):624-32. PubMed ID: 16482304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New approach to determination of surface heterogeneity of adsorbents and catalysts from the temperature programmed desorption (TPD) technique: one step beyond the condensation approximation (CA) method.
    Kowalczyk P; Kaneko K; Terzyk AP; Tanaka H; Kanoh H; Gauden PA
    J Colloid Interface Sci; 2005 Nov; 291(2):334-44. PubMed ID: 15992807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic Monte Carlo simulations of temperature programed desorption of O/Rh(111).
    Franz T; Mittendorfer F
    J Chem Phys; 2010 May; 132(19):194701. PubMed ID: 20499978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorbate-adsorbate interactions and chemisorption at different coverages studied by accurate ab initio calculations: CO on transition metal surfaces.
    Mason SE; Grinberg I; Rappe AM
    J Phys Chem B; 2006 Mar; 110(8):3816-22. PubMed ID: 16494441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Augmented Pairwise Additive Interaction Model for Lateral Adsorbate Interactions: The NO-CO Reaction System on Rh(100) and Rh(111).
    Tan L; Huang L; Liu Y; Wang Q
    Langmuir; 2018 May; 34(18):5174-5183. PubMed ID: 29619835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of the pairwise additive approximation and evaluation of many-body terms for water clusters.
    Dahlke EE; Truhlar DG
    J Phys Chem B; 2006 Jun; 110(22):10595-601. PubMed ID: 16771303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coadsorption of hydrogen and CO on well-defined Pt(35)Ru(65)/Ru(0001) surface alloys--site specificity vs. adsorbate-adsorbate interactions.
    Diemant T; Rauscher H; Bansmann J; Behm RJ
    Phys Chem Chem Phys; 2010 Sep; 12(33):9801-10. PubMed ID: 20544100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption energies, inter-adsorbate interactions, and the two binding sites within monolayer benzene on Ag(111).
    Rockey TJ; Yang M; Dai HL
    J Phys Chem B; 2006 Oct; 110(40):19973-8. PubMed ID: 17020384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physisorption of N2, O2, and CO on fully oxidized TiO2(110).
    Dohnálek Z; Kim J; Bondarchuk O; White JM; Kay BD
    J Phys Chem B; 2006 Mar; 110(12):6229-35. PubMed ID: 16553438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CO oxidation reaction on Pt(111) studied by the dynamic Monte Carlo method including lateral interactions of adsorbates.
    Nagasaka M; Kondoh H; Nakai I; Ohta T
    J Chem Phys; 2007 Jan; 126(4):044704. PubMed ID: 17286496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ensemble Effects in Adsorbate-Adsorbate Interactions in Microkinetic Modeling.
    Dietze EM; Grönbeck H
    J Chem Theory Comput; 2023 Feb; 19(3):1044-1049. PubMed ID: 36652690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of promoters and poisons on carbon monoxide adsorption on Rh(100): a DFT study.
    Nieskens DL; Curulla Ferré D; Niemantsverdriet JW
    Chemphyschem; 2005 Jul; 6(7):1293-8. PubMed ID: 15952222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature-programmed desorption studies of NH
    Wang KT; Nachimuthu S; Jiang JC
    Phys Chem Chem Phys; 2018 Sep; 20(37):24201-24209. PubMed ID: 30209447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of Temperature-Programmed Desorption via Equilibrium Thermodynamics.
    Schmid M; Parkinson GS; Diebold U
    ACS Phys Chem Au; 2023 Jan; 3(1):44-62. PubMed ID: 36718262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Six-dimensional potential energy surface for H2 at Ru(0001).
    Luppi M; Olsen RA; Baerends EJ
    Phys Chem Chem Phys; 2006 Feb; 8(6):688-96. PubMed ID: 16482308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The surface dependence of CO adsorption on Ceria.
    Nolan M; Watson GW
    J Phys Chem B; 2006 Aug; 110(33):16600-6. PubMed ID: 16913795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions between co-adsorbed CO and H on a Rh(100) single crystal surface.
    Jansen MM; Gracia J; Nieuwenhuys BE; Niemantsverdriet HJ
    Phys Chem Chem Phys; 2009 Nov; 11(43):10009-16. PubMed ID: 19865753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption of naphthalene and quinoline on Pt, Pd and Rh: a DFT study.
    Santarossa G; Iannuzzi M; Vargas A; Baiker A
    Chemphyschem; 2008 Feb; 9(3):401-13. PubMed ID: 18236490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Density-functional theory study of vibrational relaxation of CO stretching excitation on Si(100).
    Sakong S; Kratzer P; Han X; Lass K; Weingart O; Hasselbrink E
    J Chem Phys; 2008 Nov; 129(17):174702. PubMed ID: 19045365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.