BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 1579969)

  • 1. Inhibition of polymorphonuclear leukocyte adherence suppresses no-reflow after focal cerebral ischemia in baboons.
    Mori E; del Zoppo GJ; Chambers JD; Copeland BR; Arfors KE
    Stroke; 1992 May; 23(5):712-8. PubMed ID: 1579969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tissue factor contributes to microvascular defects after focal cerebral ischemia.
    Thomas WS; Mori E; Copeland BR; Yu JQ; Morrissey JH; del Zoppo GJ
    Stroke; 1993 Jun; 24(6):847-53; discussion 847. PubMed ID: 8506556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polymorphonuclear leukocytes occlude capillaries following middle cerebral artery occlusion and reperfusion in baboons.
    del Zoppo GJ; Schmid-Schönbein GW; Mori E; Copeland BR; Chang CM
    Stroke; 1991 Oct; 22(10):1276-83. PubMed ID: 1926239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. P-selectin and intercellular adhesion molecule-1 expression after focal brain ischemia and reperfusion.
    Okada Y; Copeland BR; Mori E; Tung MM; Thomas WS; del Zoppo GJ
    Stroke; 1994 Jan; 25(1):202-11. PubMed ID: 7505494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CD18-dependent adherence reactions play an important role in the development of the no-reflow phenomenon.
    Jerome SN; Smith CW; Korthuis RJ
    Am J Physiol; 1993 Feb; 264(2 Pt 2):H479-83. PubMed ID: 8095375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fibrin contributes to microvascular obstructions and parenchymal changes during early focal cerebral ischemia and reperfusion.
    Okada Y; Copeland BR; Fitridge R; Koziol JA; del Zoppo GJ
    Stroke; 1994 Sep; 25(9):1847-53; discussion 1853-4. PubMed ID: 8073468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polymorphonuclear leukocyte behavior in a nonhuman primate focal ischemia model.
    Ember JA; del Zoppo GJ; Mori E; Thomas WS; Copeland BR; Hugli TE
    J Cereb Blood Flow Metab; 1994 Nov; 14(6):1046-54. PubMed ID: 7929647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ischemia-reperfusion injury in skeletal muscle: CD 18-dependent neutrophil-endothelial adhesion and arteriolar vasoconstriction.
    Zamboni WA; Stephenson LL; Roth AC; Suchy H; Russell RC
    Plast Reconstr Surg; 1997 Jun; 99(7):2002-7; discussion 2008-9. PubMed ID: 9180724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrin alpha(IIb)beta(3) inhibitor preserves microvascular patency in experimental acute focal cerebral ischemia.
    Abumiya T; Fitridge R; Mazur C; Copeland BR; Koziol JA; Tschopp JF; Pierschbacher MD; del Zoppo GJ
    Stroke; 2000 Jun; 31(6):1402-09; discussion 1409-10. PubMed ID: 10835463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CD18-dependent leukocyte adherence and vascular injury in pig cerebral circulation after ischemia.
    Gidday JM; Park TS; Gonzales ER; Beetsch JW
    Am J Physiol; 1997 Jun; 272(6 Pt 2):H2622-9. PubMed ID: 9227539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. E-selectin appears in nonischemic tissue during experimental focal cerebral ischemia.
    Haring HP; Berg EL; Tsurushita N; Tagaya M; del Zoppo GJ
    Stroke; 1996 Aug; 27(8):1386-91; discussion 1391-2. PubMed ID: 8711807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. P-selectin and ICAM-1-dependent adherence reactions: role in the genesis of postischemic no-reflow.
    Jerome SN; Doré M; Paulson JC; Smith CW; Korthuis RJ
    Am J Physiol; 1994 Apr; 266(4 Pt 2):H1316-21. PubMed ID: 7514358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cilostazol, a phosphodiesterase inhibitor, prevents no-reflow and hemorrhage in mice with focal cerebral ischemia.
    Hase Y; Okamoto Y; Fujita Y; Kitamura A; Nakabayashi H; Ito H; Maki T; Washida K; Takahashi R; Ihara M
    Exp Neurol; 2012 Jan; 233(1):523-33. PubMed ID: 22173318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid disruption of an astrocyte interaction with the extracellular matrix mediated by integrin alpha 6 beta 4 during focal cerebral ischemia/reperfusion.
    Wagner S; Tagaya M; Koziol JA; Quaranta V; del Zoppo GJ
    Stroke; 1997 Apr; 28(4):858-65. PubMed ID: 9099208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microvascular in vivo assessment of reperfusion injury: significance of prostaglandin E(1) and I(2) in postischemic "no-reflow" and "reflow-paradox".
    Tauber S; Menger MD; Lehr HA
    J Surg Res; 2004 Jul; 120(1):1-11. PubMed ID: 15172184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microvascular ischemia-reperfusion injury in striated muscle: significance of "reflow paradox".
    Menger MD; Pelikan S; Steiner D; Messmer K
    Am J Physiol; 1992 Dec; 263(6 Pt 2):H1901-6. PubMed ID: 1282785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neutrophil-mediated microvascular dysfunction in postischemic canine skeletal muscle. Role of granulocyte adherence.
    Carden DL; Smith JK; Korthuis RJ
    Circ Res; 1990 May; 66(5):1436-44. PubMed ID: 2159391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antibody against leukocyte integrin (CD18) prevents reperfusion-induced lung vascular injury.
    Horgan MJ; Wright SD; Malik AB
    Am J Physiol; 1990 Oct; 259(4 Pt 1):L315-9. PubMed ID: 1977323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cerebral microvessel responses to focal ischemia.
    del Zoppo GJ; Mabuchi T
    J Cereb Blood Flow Metab; 2003 Aug; 23(8):879-94. PubMed ID: 12902832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydroxyethyl starch reduces leukocyte adherence and vascular injury in the newborn pig cerebral circulation after asphyxia.
    Kaplan SS; Park TS; Gonzales ER; Gidday JM
    Stroke; 2000 Sep; 31(9):2218-23. PubMed ID: 10978055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.