These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

651 related articles for article (PubMed ID: 15799779)

  • 1. Mathematical model of blunt injury to the vascular wall via formation of rouleaux and changes in local hemodynamic and rheological factors. Implications for the mechanism of traumatic myocardial infarction.
    Ismailov RM
    Theor Biol Med Model; 2005 Mar; 2():13. PubMed ID: 15799779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arch vessel injury: geometrical considerations. Implications for the mechanism of traumatic myocardial infarction II.
    Ismailov RM
    World J Emerg Surg; 2006 Sep; 1():28. PubMed ID: 16961917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New trends in clinical hemorheology: an introduction to the concept of the hemorheological profile.
    Stoltz JF; Donner M
    Schweiz Med Wochenschr Suppl; 1991; 43():41-9. PubMed ID: 1843037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature-dependent threshold shear stress of red blood cell aggregation.
    Lim HJ; Lee YJ; Nam JH; Chung S; Shin S
    J Biomech; 2010 Feb; 43(3):546-50. PubMed ID: 19878949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mathematical model describing erythrocyte sedimentation rate. Implications for blood viscosity changes in traumatic shock and crush syndrome.
    Ismailov RM; Shevchuk NA; Khusanov H
    Biomed Eng Online; 2005 Apr; 4():24. PubMed ID: 15807888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dielectric approach to investigation of erythrocyte aggregation. II. Kinetics of erythrocyte aggregation-disaggregation in quiescent and flowing blood.
    Pribush A; Meiselman HJ; Meyerstein D; Meyerstein N
    Biorheology; 2000; 37(5-6):429-41. PubMed ID: 11204548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blood rheology and hemodynamics.
    Baskurt OK; Meiselman HJ
    Semin Thromb Hemost; 2003 Oct; 29(5):435-50. PubMed ID: 14631543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of rouleaux formation on blood coagulation.
    Riha P; Liao F; Stoltz JF
    Clin Hemorheol Microcirc; 1997; 17(4):341-6. PubMed ID: 9493903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distributions of wall shear stress in venular convergences of mouse cremaster muscle.
    Kim MB; Sarelius IH
    Microcirculation; 2003 Apr; 10(2):167-78. PubMed ID: 12700585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of dietary triglycerides on rheological properties of human red blood cells (abstract).
    Cicha I; Suzuki Y; Tateishi N; Maeda N
    Clin Hemorheol Microcirc; 2004; 30(3-4):301-5. PubMed ID: 15258358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Syllectometry: the effect of aggregometer geometry in the assessment of red blood cell shape recovery and aggregation.
    Dobbe JG; Streekstra GJ; Strackee J; Rutten MC; Stijnen JM; Grimbergen CA
    IEEE Trans Biomed Eng; 2003 Jan; 50(1):97-106. PubMed ID: 12617529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hemorheological changes dependent on the time from the onset of ischemic stroke.
    Kowal P; Marcinkowska-GapiƄska A
    J Neurol Sci; 2007 Jul; 258(1-2):132-6. PubMed ID: 17477935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blunt trauma to large vessels: a mathematical study.
    Ismailov RM; Shevchuk NA; Schwerha J; Keller L; Khusanov H
    Biomed Eng Online; 2004 May; 3(1):14. PubMed ID: 15153246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determinants of tumor blood flow: a review.
    Jain RK
    Cancer Res; 1988 May; 48(10):2641-58. PubMed ID: 3282647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of the prior flow velocity on the structural organization of aggregated erythrocytes in the quiescent blood.
    Pribush A; Meyerstein D; Meyerstein N
    Colloids Surf B Biointerfaces; 2011 Feb; 82(2):518-25. PubMed ID: 21036560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aggregation behavior of red blood cells in shear flow. A theoretical interpretation of simultaneous rheo-optical and viscometric measurements.
    Berli CL; Quemada D
    Biorheology; 2001; 38(1):27-38. PubMed ID: 11381163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Red blood cell velocity profiles in skeletal muscle venules at low flow rates are described by the Casson model.
    Das B; Bishop JJ; Kim S; Meiselman HJ; Johnson PC; Popel AS
    Clin Hemorheol Microcirc; 2007; 36(3):217-33. PubMed ID: 17361024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of sedimentation of small red blood cell aggregates on blood flow in narrow horizontal tubes.
    Murata T
    Biorheology; 1996; 33(3):267-83. PubMed ID: 8935183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hemorheological mechanisms in Alzheimer's disease.
    Chang CY; Liang HJ; Chow SY; Chen SM; Liu DZ
    Microcirculation; 2007 Aug; 14(6):627-34. PubMed ID: 17710633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Obtaining the shear stress versus shear rate relationship and yield stress of blood from capillary viscometry data by Tikhonov regularization.
    Yeow YL; Leong YK; Wickramasinghe SR; Han B
    Biotechnol Prog; 2002; 18(4):879-84. PubMed ID: 12153325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.