These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 15799864)

  • 1. Rapid analysis of 14C and 3H in graphite and concrete for decommissioning of nuclear reactor.
    Hou X
    Appl Radiat Isot; 2005 Jun; 62(6):871-82. PubMed ID: 15799864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of 36Cl in nuclear waste from reactor decommissioning.
    Hou X; Ostergaard LF; Nielsen SP
    Anal Chem; 2007 Apr; 79(8):3126-34. PubMed ID: 17375901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation analysis of concrete and graphite in the experimental reactor RUS.
    Cometto M; Ridikas D; Aubert MC; Damoy F; Ancius D
    Radiat Prot Dosimetry; 2005; 115(1-4):104-9. PubMed ID: 16381692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The radioactivity estimation of 14C and 3H in graphite waste samples of the KRR-2.
    Reyoung Kim H
    Appl Radiat Isot; 2013 Sep; 79():109-13. PubMed ID: 23770932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tritium speciation in nuclear reactor bioshield concrete and its impact on accurate analysis.
    Kim DJ; E Warwick P; Croudace IW
    Anal Chem; 2008 Jul; 80(14):5476-80. PubMed ID: 18543953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A high-throughput method for the conversion of CO2 obtained from biochemical samples to graphite in septa-sealed vials for quantification of 14C via accelerator mass spectrometry.
    Ognibene TJ; Bench G; Vogel JS; Peaslee GF; Murov S
    Anal Chem; 2003 May; 75(9):2192-6. PubMed ID: 12720362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid analysis method for the determination of 14C specific activity in irradiated graphite.
    Remeikis V; Lagzdina E; Garbaras A; Gudelis A; Garankin J; Plukienė R; Juodis L; Duškesas G; Lingis D; Abdulajev V; Plukis A
    PLoS One; 2018; 13(1):e0191677. PubMed ID: 29370233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effective desorption of tritium from diverse solid matrices and its application to routine analysis of decommissioning materials.
    Warwick PE; Kim D; Croudace IW; Oh J
    Anal Chim Acta; 2010 Aug; 676(1-2):93-102. PubMed ID: 20800748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of scaling factors for the activated concrete of the KRR-2.
    Hong SB; Kang MJ; Lee KW; Chung US
    Appl Radiat Isot; 2009; 67(7-8):1530-3. PubMed ID: 19303787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct sample introduction of wines in graphite furnace atomic absorption spectrometry for the simultaneous determination of arsenic, cadmium, copper and lead content.
    Ajtony Z; Szoboszlai N; Suskó EK; Mezei P; György K; Bencs L
    Talanta; 2008 Jul; 76(3):627-34. PubMed ID: 18585331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Examination of Surface Deposits on Oldbury Reactor Core Graphite to Determine the Concentration and Distribution of 14C.
    Payne L; Heard PJ; Scott TB
    PLoS One; 2016; 11(10):e0164159. PubMed ID: 27706228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solid sampling-graphite furnace atomic absorption spectrometry for the direct determination of boron in plant tissues.
    Resano M; Briceño J; Aramendía M; Belarra MA
    Anal Chim Acta; 2007 Jan; 582(2):214-22. PubMed ID: 17386495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct determination of metallic impurities in graphite by EDXRF.
    Natarajan V; Porwal NK; Babu Y; Rajeswari B; Dhawale BA; Kumar M; Godbole SV; Manchanda VK
    Appl Radiat Isot; 2010 Jun; 68(6):1128-31. PubMed ID: 20080415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zirconia-coated graphite adsorption bar micro-extraction combined with ETV-ICP-MS for the determination of trace amounts of Cd, Hg and Pb in environmental and biological samples.
    Pu X; Jiang Z; Hu B
    J Mass Spectrom; 2006 Jul; 41(7):887-93. PubMed ID: 16810641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct-immersion and water-extraction methods for measuring tritium contamination of concrete.
    Kawano T; Kuroyanagi M; Tabei T
    Health Phys; 2007 Aug; 93(2):157-60. PubMed ID: 17622820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of mercury in ash and soil samples by oxygen flask combustion method--cold vapor atomic fluorescence spectrometry (CVAFS).
    Geng W; Nakajima T; Takanashi H; Ohki A
    J Hazard Mater; 2008 Jun; 154(1-3):325-30. PubMed ID: 18023528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dispersive liquid-liquid microextraction combined with graphite furnace atomic absorption spectrometry: ultra trace determination of cadmium in water samples.
    Zeini Jahromi E; Bidari A; Assadi Y; Milani Hosseini MR; Jamali MR
    Anal Chim Acta; 2007 Mar; 585(2):305-11. PubMed ID: 17386679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dismantling of the DIORIT research reactor - Conditioning of activated graphite.
    Sierra Perler IC; Beer HF; Müth J; Kramer A
    J Environ Radioact; 2019 Jan; 196():199-203. PubMed ID: 28822611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experience of on-site disposal of production uranium-graphite nuclear reactor.
    Pavliuk AO; Kotlyarevskiy SG; Bespala EV; Zakharova EV; Ermolaev VM; Volkova AG
    J Environ Radioact; 2018 Apr; 184-185():22-31. PubMed ID: 29331559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid radiochemical method for determination of actinides in emergency concrete and brick samples.
    Maxwell SL; Culligan BK; Kelsey-Wall A; Shaw PJ
    Anal Chim Acta; 2011 Sep; 701(1):112-8. PubMed ID: 21763816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.