These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
267 related articles for article (PubMed ID: 15799962)
1. Proteins in human brain cortex are modified by oxidation, glycoxidation, and lipoxidation. Effects of Alzheimer disease and identification of lipoxidation targets. Pamplona R; Dalfó E; Ayala V; Bellmunt MJ; Prat J; Ferrer I; Portero-Otín M J Biol Chem; 2005 Jun; 280(22):21522-30. PubMed ID: 15799962 [TBL] [Abstract][Full Text] [Related]
2. Lipoxidation products as biomarkers of oxidative damage to proteins during lipid peroxidation reactions. Requena JR; Fu MX; Ahmed MU; Jenkins AJ; Lyons TJ; Thorpe SR Nephrol Dial Transplant; 1996; 11 Suppl 5():48-53. PubMed ID: 9044307 [TBL] [Abstract][Full Text] [Related]
3. Exceptionally old mice are highly resistant to lipoxidation-derived molecular damage. Arranz L; Naudí A; De la Fuente M; Pamplona R Age (Dordr); 2013 Jun; 35(3):621-35. PubMed ID: 22367548 [TBL] [Abstract][Full Text] [Related]
4. Oxidation, glycoxidation, lipoxidation, nitration, and responses to oxidative stress in the cerebral cortex in Creutzfeldt-Jakob disease. Freixes M; Rodríguez A; Dalfó E; Ferrer I Neurobiol Aging; 2006 Dec; 27(12):1807-15. PubMed ID: 16310893 [TBL] [Abstract][Full Text] [Related]
5. Pyridoxamine, an inhibitor of advanced glycation reactions, also inhibits advanced lipoxidation reactions. Mechanism of action of pyridoxamine. Onorato JM; Jenkins AJ; Thorpe SR; Baynes JW J Biol Chem; 2000 Jul; 275(28):21177-84. PubMed ID: 10801874 [TBL] [Abstract][Full Text] [Related]
6. Active glycation in neurofibrillary pathology of Alzheimer disease: N(epsilon)-(carboxymethyl) lysine and hexitol-lysine. Castellani RJ; Harris PL; Sayre LM; Fujii J; Taniguchi N; Vitek MP; Founds H; Atwood CS; Perry G; Smith MA Free Radic Biol Med; 2001 Jul; 31(2):175-80. PubMed ID: 11440829 [TBL] [Abstract][Full Text] [Related]
7. Detection and localization of markers of oxidative stress by in situ methods: application in the study of Alzheimer disease. Moreira PI; Sayre LM; Zhu X; Nunomura A; Smith MA; Perry G Methods Mol Biol; 2010; 610():419-34. PubMed ID: 20013193 [TBL] [Abstract][Full Text] [Related]
8. Generation of protein carbonyls by glycoxidation and lipoxidation reactions with autoxidation products of ascorbic acid and polyunsaturated fatty acids. Miyata T; Inagi R; Asahi K; Yamada Y; Horie K; Sakai H; Uchida K; Kurokawa K FEBS Lett; 1998 Oct; 437(1-2):24-8. PubMed ID: 9804165 [TBL] [Abstract][Full Text] [Related]
9. Increased oxidation, glycoxidation, and lipoxidation of brain proteins in prion disease. Pamplona R; Naudí A; Gavín R; Pastrana MA; Sajnani G; Ilieva EV; Del Río JA; Portero-Otín M; Ferrer I; Requena JR Free Radic Biol Med; 2008 Oct; 45(8):1159-66. PubMed ID: 18703134 [TBL] [Abstract][Full Text] [Related]
10. Glial fibrillary acidic protein is a major target of glycoxidative and lipoxidative damage in Pick's disease. Muntané G; Dalfó E; Martínez A; Rey MJ; Avila J; Pérez M; Portero M; Pamplona R; Ayala V; Ferrer I J Neurochem; 2006 Oct; 99(1):177-85. PubMed ID: 16987245 [TBL] [Abstract][Full Text] [Related]
11. Evidence of oxidative stress in the neocortex in incidental Lewy body disease. Dalfó E; Portero-Otín M; Ayala V; Martínez A; Pamplona R; Ferrer I J Neuropathol Exp Neurol; 2005 Sep; 64(9):816-30. PubMed ID: 16141792 [TBL] [Abstract][Full Text] [Related]
12. Protein nonenzymatic modifications and proteasome activity in skeletal muscle from the short-lived rat and long-lived pigeon. Portero-Otín M; Requena JR; Bellmunt MJ; Ayala V; Pamplona R Exp Gerontol; 2004 Oct; 39(10):1527-35. PubMed ID: 15501023 [TBL] [Abstract][Full Text] [Related]
13. Effects of increased iron intake during the neonatal period on the brain of adult AbetaPP/PS1 transgenic mice. Fernandez LL; Carmona M; Portero-Otin M; Naudi A; Pamplona R; Schröder N; Ferrer I J Alzheimers Dis; 2010; 19(3):1069-80. PubMed ID: 20157260 [TBL] [Abstract][Full Text] [Related]
14. Mechanism of the inhibitory effect of OPB-9195 [(+/-)-2-isopropylidenehydrazono-4-oxo-thiazolidin-5-yla cetanilide] on advanced glycation end product and advanced lipoxidation end product formation. Miyata T; Ueda Y; Asahi K; Izuhara Y; Inagi R; Saito A; VAN Ypersele DE Strihou C; Kurokawa K J Am Soc Nephrol; 2000 Sep; 11(9):1719-1725. PubMed ID: 10966497 [TBL] [Abstract][Full Text] [Related]
15. Localization of identified advanced glycation end-product structures, N epsilon(carboxymethyl)lysine and pentosidine, in age-related inclusions in human brains. Kimura T; Takamatsu J; Miyata T; Miyakawa T; Horiuchi S Pathol Int; 1998 Aug; 48(8):575-9. PubMed ID: 9736403 [TBL] [Abstract][Full Text] [Related]
16. Detection of oxidized and glycated proteins in clinical samples using mass spectrometry--a user's perspective. Thornalley PJ; Rabbani N Biochim Biophys Acta; 2014 Feb; 1840(2):818-29. PubMed ID: 23558060 [TBL] [Abstract][Full Text] [Related]
17. Immunochemical crossreactivity of antibodies specific for "advanced glycation endproducts" with "advanced lipoxidation endproducts". Richter T; Münch G; Lüth HJ; Arendt T; Kientsch-Engel R; Stahl P; Fengler D; Kuhla B Neurobiol Aging; 2005 Apr; 26(4):465-74. PubMed ID: 15653175 [TBL] [Abstract][Full Text] [Related]
18. Inhibition of renin angiotensin system decreases renal protein oxidative damage in diabetic rats. Portero-Otín M; Pamplona R; Boada J; Jové M; Gonzalo H; Buleon M; Linz W; Schäfer S; Tack I; Girolami JP Biochem Biophys Res Commun; 2008 Apr; 368(3):528-35. PubMed ID: 18243127 [TBL] [Abstract][Full Text] [Related]
19. Formation of N(epsilon)-(carboxymethyl)lysine and loss of lysine in casein glucose-fatty acid model systems. Lima M; Assar SH; Ames JM J Agric Food Chem; 2010 Feb; 58(3):1954-8. PubMed ID: 20030411 [TBL] [Abstract][Full Text] [Related]