These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 15799998)
1. A novel statistical ligand-binding site predictor: application to ATP-binding sites. Guo T; Shi Y; Sun Z Protein Eng Des Sel; 2005 Feb; 18(2):65-70. PubMed ID: 15799998 [TBL] [Abstract][Full Text] [Related]
3. Binding response: a descriptor for selecting ligand binding site on protein surfaces. Zhong S; MacKerell AD J Chem Inf Model; 2007; 47(6):2303-15. PubMed ID: 17900106 [TBL] [Abstract][Full Text] [Related]
4. Fold independent structural comparisons of protein-ligand binding sites for exploring functional relationships. Gold ND; Jackson RM J Mol Biol; 2006 Feb; 355(5):1112-24. PubMed ID: 16359705 [TBL] [Abstract][Full Text] [Related]
5. Detection of 3D atomic similarities and their use in the discrimination of small molecule protein-binding sites. Najmanovich R; Kurbatova N; Thornton J Bioinformatics; 2008 Aug; 24(16):i105-11. PubMed ID: 18689810 [TBL] [Abstract][Full Text] [Related]
6. Predicting small ligand binding sites in proteins using backbone structure. Bordner AJ Bioinformatics; 2008 Dec; 24(24):2865-71. PubMed ID: 18940825 [TBL] [Abstract][Full Text] [Related]
7. A novel computational analysis of ligand-induced conformational changes in the ATP binding sites of cyclin dependent kinases. Subramanian J; Sharma S; B-Rao C J Med Chem; 2006 Sep; 49(18):5434-41. PubMed ID: 16942017 [TBL] [Abstract][Full Text] [Related]
8. Computational studies of tryptophanyl-tRNA synthetase: activation of ATP by induced-fit. Kapustina M; Carter CW J Mol Biol; 2006 Oct; 362(5):1159-80. PubMed ID: 16949606 [TBL] [Abstract][Full Text] [Related]
9. Using evolutionary and structural information to predict DNA-binding sites on DNA-binding proteins. Kuznetsov IB; Gou Z; Li R; Hwang S Proteins; 2006 Jul; 64(1):19-27. PubMed ID: 16568445 [TBL] [Abstract][Full Text] [Related]
13. Novel statistical-thermodynamic methods to predict protein-ligand binding positions using probability distribution functions. Ruvinsky AM; Kozintsev AV Proteins; 2006 Jan; 62(1):202-8. PubMed ID: 16287127 [TBL] [Abstract][Full Text] [Related]
14. Ligand prediction for orphan targets using support vector machines and various target-ligand kernels is dominated by nearest neighbor effects. Wassermann AM; Geppert H; Bajorath J J Chem Inf Model; 2009 Oct; 49(10):2155-67. PubMed ID: 19780576 [TBL] [Abstract][Full Text] [Related]
15. Cooperativity and allostery in haemoglobin function. Ciaccio C; Coletta A; De Sanctis G; Marini S; Coletta M IUBMB Life; 2008 Feb; 60(2):112-23. PubMed ID: 18380000 [TBL] [Abstract][Full Text] [Related]
16. Efficient shape descriptors for feature extraction in 3D protein structures. Ranganath A; Shet KC; Vidyavathi N In Silico Biol; 2007; 7(2):169-74. PubMed ID: 17688442 [TBL] [Abstract][Full Text] [Related]
17. Elucidation of characteristic structural features of ligand binding sites of protein kinases: a neural network approach. Niwa T J Chem Inf Model; 2006; 46(5):2158-66. PubMed ID: 16995746 [TBL] [Abstract][Full Text] [Related]
18. Carbohydrate-binding proteins: Dissecting ligand structures through solvent environment occupancy. Gauto DF; Di Lella S; Guardia CM; Estrin DA; Martà MA J Phys Chem B; 2009 Jun; 113(25):8717-24. PubMed ID: 19485380 [TBL] [Abstract][Full Text] [Related]
19. Enhancing the accuracy of chemogenomic models with a three-dimensional binding site kernel. Meslamani J; Rognan D J Chem Inf Model; 2011 Jul; 51(7):1593-603. PubMed ID: 21644501 [TBL] [Abstract][Full Text] [Related]
20. Regulatory roles of the N-terminal domain based on crystal structures of human pyruvate dehydrogenase kinase 2 containing physiological and synthetic ligands. Knoechel TR; Tucker AD; Robinson CM; Phillips C; Taylor W; Bungay PJ; Kasten SA; Roche TE; Brown DG Biochemistry; 2006 Jan; 45(2):402-15. PubMed ID: 16401071 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]