BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 15800603)

  • 21. Interplay between DNA N-glycosylases/AP lyases at multiply damaged sites and biological consequences.
    Eot-Houllier G; Gonera M; Gasparutto D; Giustranti C; Sage E
    Nucleic Acids Res; 2007; 35(10):3355-66. PubMed ID: 17468500
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Repair of tandem base lesions in DNA by human cell extracts generates persisting single-strand breaks.
    Budworth H; Matthewman G; O'Neill P; Dianov GL
    J Mol Biol; 2005 Sep; 351(5):1020-9. PubMed ID: 16054643
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The intricate structural chemistry of base excision repair machinery: implications for DNA damage recognition, removal, and repair.
    Hitomi K; Iwai S; Tainer JA
    DNA Repair (Amst); 2007 Apr; 6(4):410-28. PubMed ID: 17208522
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modulation of DNA glycosylase activities in mesenchymal stem cells.
    Hildrestrand GA; Duggal S; Bjørås M; Luna L; Brinchmann JE
    Exp Cell Res; 2009 Sep; 315(15):2558-67. PubMed ID: 19477173
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 8-oxoguanine incorporation into DNA repeats in vitro and mismatch recognition by MutSalpha.
    Macpherson P; Barone F; Maga G; Mazzei F; Karran P; Bignami M
    Nucleic Acids Res; 2005; 33(16):5094-105. PubMed ID: 16174844
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A base-excision DNA-repair protein finds intrahelical lesion bases by fast sliding in contact with DNA.
    Blainey PC; van Oijen AM; Banerjee A; Verdine GL; Xie XS
    Proc Natl Acad Sci U S A; 2006 Apr; 103(15):5752-7. PubMed ID: 16585517
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oxidized guanine lesions and hOgg1 activity in lung cancer.
    Mambo E; Chatterjee A; de Souza-Pinto NC; Mayard S; Hogue BA; Hoque MO; Dizdaroglu M; Bohr VA; Sidransky D
    Oncogene; 2005 Jun; 24(28):4496-508. PubMed ID: 15856018
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Up-regulation of myocardial DNA base excision repair activities in experimental heart failure.
    Yndestad A; Neurauter CG; Oie E; Forstrøm RJ; Vinge LE; Eide L; Luna L; Aukrust P; Bjørås M
    Mutat Res; 2009 Jun; 666(1-2):32-8. PubMed ID: 19481677
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cloning and characterization of an ascidian homolog of the human 8-oxoguanine DNA glycosylase (Ogg1) that is involved in the repair of 8-oxo-7,8-dihydroguanine in DNA in Ciona intestinalis.
    Jin G; Zhang QM; Satou Y; Satoh N; Kasai H; Yonei S
    Int J Radiat Biol; 2006 Apr; 82(4):241-50. PubMed ID: 16690592
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A role for iron-sulfur clusters in DNA repair.
    Lukianova OA; David SS
    Curr Opin Chem Biol; 2005 Apr; 9(2):145-51. PubMed ID: 15811798
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recent advances in the structural mechanisms of DNA glycosylases.
    Brooks SC; Adhikary S; Rubinson EH; Eichman BF
    Biochim Biophys Acta; 2013 Jan; 1834(1):247-71. PubMed ID: 23076011
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Purification and characterization of NEIL1 and NEIL2, members of a distinct family of mammalian DNA glycosylases for repair of oxidized bases.
    Hazra TK; Mitra S
    Methods Enzymol; 2006; 408():33-48. PubMed ID: 16793361
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Substrate specificity of Fpg (MutM) and hOGG1, two repair glycosylases.
    Hamm ML; Gill TJ; Nicolson SC; Summers MR
    J Am Chem Soc; 2007 Jun; 129(25):7724-5. PubMed ID: 17536801
    [No Abstract]   [Full Text] [Related]  

  • 34. XRCC1 interactions with multiple DNA glycosylases: a model for its recruitment to base excision repair.
    Campalans A; Marsin S; Nakabeppu Y; O'connor TR; Boiteux S; Radicella JP
    DNA Repair (Amst); 2005 Jul; 4(7):826-35. PubMed ID: 15927541
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Base excision repair of DNA: glycosylases].
    Korolev BG
    Genetika; 2005 Jun; 41(6):725-35. PubMed ID: 16080596
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Finding needles in DNA stacks.
    Burrows CJ; Fleming AM
    Proc Natl Acad Sci U S A; 2009 Sep; 106(38):16010-1. PubMed ID: 19805252
    [No Abstract]   [Full Text] [Related]  

  • 37. Crosstalk of DNA glycosylases with pathways other than base excision repair.
    Kovtun IV; McMurray CT
    DNA Repair (Amst); 2007 Apr; 6(4):517-29. PubMed ID: 17129768
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Damage specificity of human DNA glycosylases for oxidative pyrimidine lesions.
    Katafuchi A; Matsubara M; Terato H; Iwai S; Hanaoka F; Ide H
    Nucleic Acids Symp Ser (Oxf); 2004; (48):175-6. PubMed ID: 17150535
    [TBL] [Abstract][Full Text] [Related]  

  • 39. hOGG1 recognizes oxidative damage using the comet assay with greater specificity than FPG or ENDOIII.
    Smith CC; O'Donovan MR; Martin EA
    Mutagenesis; 2006 May; 21(3):185-90. PubMed ID: 16597659
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Crystal structure analysis of DNA lesion repair and tolerance mechanisms.
    Schneider S; Schorr S; Carell T
    Curr Opin Struct Biol; 2009 Feb; 19(1):87-95. PubMed ID: 19200715
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.