BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 15800616)

  • 21. Catalytic and DNA-binding properties of the human Ogg1 DNA N-glycosylase/AP lyase: biochemical exploration of H270, Q315 and F319, three amino acids of the 8-oxoguanine-binding pocket.
    van der Kemp PA; Charbonnier JB; Audebert M; Boiteux S
    Nucleic Acids Res; 2004; 32(2):570-8. PubMed ID: 14752045
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 8-oxoguanine lesioned B-DNA molecule complexed with repair enzyme hOGG1: a molecular dynamics study.
    Pinak M
    J Comput Chem; 2003 May; 24(7):898-907. PubMed ID: 12692799
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural Insight into the Discrimination between 8-Oxoguanine Glycosidic Conformers by DNA Repair Enzymes: A Molecular Dynamics Study of Human Oxoguanine Glycosylase 1 and Formamidopyrimidine-DNA Glycosylase.
    Sowlati-Hashjin S; Wetmore SD
    Biochemistry; 2018 Feb; 57(7):1144-1154. PubMed ID: 29320630
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanism of recognition and repair of damaged DNA by human 8-oxoguanine DNA glycosylase hOGG1.
    Kuznetsov NA; Koval VV; Fedorova OS
    Biochemistry (Mosc); 2011 Jan; 76(1):118-30. PubMed ID: 21568844
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lesion search and recognition by thymine DNA glycosylase revealed by single molecule imaging.
    Buechner CN; Maiti A; Drohat AC; Tessmer I
    Nucleic Acids Res; 2015 Mar; 43(5):2716-29. PubMed ID: 25712093
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A base-excision DNA-repair protein finds intrahelical lesion bases by fast sliding in contact with DNA.
    Blainey PC; van Oijen AM; Banerjee A; Verdine GL; Xie XS
    Proc Natl Acad Sci U S A; 2006 Apr; 103(15):5752-7. PubMed ID: 16585517
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Computational clues for a new mechanism in the glycosylase activity of the human DNA repair protein hOGG1. A generalized paradigm for purine-repairing systems?
    Calvaresi M; Bottoni A; Garavelli M
    J Phys Chem B; 2007 Jun; 111(23):6557-70. PubMed ID: 17508740
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural biology: DNA search and rescue.
    David SS
    Nature; 2005 Mar; 434(7033):569-70. PubMed ID: 15800603
    [No Abstract]   [Full Text] [Related]  

  • 29. A DNA glycosylase from Pyrobaculum aerophilum with an 8-oxoguanine binding mode and a noncanonical helix-hairpin-helix structure.
    Lingaraju GM; Sartori AA; Kostrewa D; Prota AE; Jiricny J; Winkler FK
    Structure; 2005 Jan; 13(1):87-98. PubMed ID: 15642264
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Trapping and structural elucidation of a very advanced intermediate in the lesion-extrusion pathway of hOGG1.
    Lee S; Radom CT; Verdine GL
    J Am Chem Soc; 2008 Jun; 130(25):7784-5. PubMed ID: 18507380
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Human Oxoguanine Glycosylase 1 Removes Solution Accessible 8-Oxo-7,8-dihydroguanine Lesions from Globally Substituted Nucleosomes Except in the Dyad Region.
    Bilotti K; Tarantino ME; Delaney S
    Biochemistry; 2018 Mar; 57(9):1436-1439. PubMed ID: 29341606
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular Mechanisms Associated with Clustered Lesion-Induced Impairment of 8-oxoG Recognition by the Human Glycosylase OGG1.
    Jiang T; Monari A; Dumont E; Bignon E
    Molecules; 2021 Oct; 26(21):. PubMed ID: 34770874
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of 8-oxoguanine on DNA structure and deformability.
    Dršata T; Kara M; Zacharias M; Lankaš F
    J Phys Chem B; 2013 Oct; 117(39):11617-22. PubMed ID: 24028561
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Roles of Active-Site Amino Acid Residues in Specific Recognition of DNA Lesions by Human 8-Oxoguanine-DNA Glycosylase (OGG1).
    Tyugashev TE; Vorobjev YN; Kuznetsova AA; Lukina MV; Kuznetsov NA; Fedorova OS
    J Phys Chem B; 2019 Jun; 123(23):4878-4887. PubMed ID: 31117610
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Encounter and extrusion of an intrahelical lesion by a DNA repair enzyme.
    Qi Y; Spong MC; Nam K; Banerjee A; Jiralerspong S; Karplus M; Verdine GL
    Nature; 2009 Dec; 462(7274):762-6. PubMed ID: 20010681
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Surprising repair activities of nonpolar analogs of 8-oxoG expose features of recognition and catalysis by base excision repair glycosylases.
    McKibbin PL; Kobori A; Taniguchi Y; Kool ET; David SS
    J Am Chem Soc; 2012 Jan; 134(3):1653-61. PubMed ID: 22175854
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular biology: ensuring error-free DNA repair.
    Lindahl T
    Nature; 2004 Feb; 427(6975):598. PubMed ID: 14961108
    [No Abstract]   [Full Text] [Related]  

  • 38. Product inhibition and magnesium modulate the dual reaction mode of hOgg1.
    Morland I; Luna L; Gustad E; Seeberg E; Bjørås M
    DNA Repair (Amst); 2005 Mar; 4(3):381-7. PubMed ID: 15661661
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure of the major oxidative damage 7,8-dihydro-8-oxoguanine presented into a catalytically competent DNA glycosylase.
    Schmaltz LF; Ceniceros JE; Lee S
    Biochem J; 2022 Nov; 479(21):2297-2309. PubMed ID: 36268656
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural characterization of human 8-oxoguanine DNA glycosylase variants bearing active site mutations.
    Radom CT; Banerjee A; Verdine GL
    J Biol Chem; 2007 Mar; 282(12):9182-94. PubMed ID: 17114185
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.