BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

544 related articles for article (PubMed ID: 15800619)

  • 21. Exciton coherence and energy transport in the light-harvesting dimers of allophycocyanin.
    Womick JM; Moran AM
    J Phys Chem B; 2009 Dec; 113(48):15747-59. PubMed ID: 19894754
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The electronic couplings in electron transfer and excitation energy transfer.
    Hsu CP
    Acc Chem Res; 2009 Apr; 42(4):509-18. PubMed ID: 19215069
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The fate of the triplet excitations in the Fenna-Matthews-Olson complex.
    Kihara S; Hartzler DA; Orf GS; Blankenship RE; Savikhin S
    J Phys Chem B; 2015 May; 119(18):5765-72. PubMed ID: 25856694
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Visualization of excitonic structure in the Fenna-Matthews-Olson photosynthetic complex by polarization-dependent two-dimensional electronic spectroscopy.
    Read EL; Schlau-Cohen GS; Engel GS; Wen J; Blankenship RE; Fleming GR
    Biophys J; 2008 Jul; 95(2):847-56. PubMed ID: 18375502
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Time-resolved methods in biophysics. 4. Broadband pump-probe spectroscopy system with sub-20 fs temporal resolution for the study of energy transfer processes in photosynthesis.
    Cerullo G; Manzoni C; Lüer L; Polli D
    Photochem Photobiol Sci; 2007 Feb; 6(2):135-44. PubMed ID: 17277836
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Femtosecond time-resolved and two-dimensional vibrational sum frequency spectroscopic instrumentation to study structural dynamics at interfaces.
    Ghosh A; Smits M; Bredenbeck J; Dijkhuizen N; Bonn M
    Rev Sci Instrum; 2008 Sep; 79(9):093907. PubMed ID: 19044428
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Developing a structure-function model for the cryptophyte phycoerythrin 545 using ultrahigh resolution crystallography and ultrafast laser spectroscopy.
    Doust AB; Marai CN; Harrop SJ; Wilk KE; Curmi PM; Scholes GD
    J Mol Biol; 2004 Nov; 344(1):135-53. PubMed ID: 15504407
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Vibronically coherent speed-up of the excitation energy transfer in the Fenna-Matthews-Olson complex.
    Nalbach P; Mujica-Martinez CA; Thorwart M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022706. PubMed ID: 25768530
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hexacoordination of bacteriochlorophyll in photosynthetic antenna LH1.
    Fiedor L
    Biochemistry; 2006 Feb; 45(6):1910-8. PubMed ID: 16460037
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spectroscopic Studies of Cryptophyte Light Harvesting Proteins: Vibrations and Coherent Oscillations.
    Arpin PC; Turner DB; McClure SD; Jumper CC; Mirkovic T; Challa JR; Lee J; Teng CY; Green BR; Wilk KE; Curmi PM; Hoef-Emden K; McCamant DW; Scholes GD
    J Phys Chem B; 2015 Aug; 119(31):10025-34. PubMed ID: 26189800
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamics of light harvesting in photosynthesis.
    Cheng YC; Fleming GR
    Annu Rev Phys Chem; 2009; 60():241-62. PubMed ID: 18999996
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microscopic quantum coherence in a photosynthetic-light-harvesting antenna.
    Dawlaty JM; Ishizaki A; De AK; Fleming GR
    Philos Trans A Math Phys Eng Sci; 2012 Aug; 370(1972):3672-91. PubMed ID: 22753820
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Isotopic replacement of pigments and a lipid in chlorosomes from Chlorobium limicola: characterization of the resultant chlorosomes.
    Kakitani Y; Harada K; Mizoguchi T; Koyama Y
    Biochemistry; 2007 Jun; 46(22):6513-24. PubMed ID: 17497832
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of B800 in carotenoid-bacteriochlorophyll energy and electron transfer in LH2 complexes from the purple bacterium Rhodobacter sphaeroides.
    Polívka T; Niedzwiedzki D; Fuciman M; Sundström V; Frank HA
    J Phys Chem B; 2007 Jun; 111(25):7422-31. PubMed ID: 17547450
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Vibronic enhancement of exciton sizes and energy transport in photosynthetic complexes.
    Womick JM; Moran AM
    J Phys Chem B; 2011 Feb; 115(6):1347-56. PubMed ID: 21268650
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Progresses in the study on light harvesting pigment protein complexes and reaction centers from purple bacteria].
    Liu Y; Gao JP; Xu CH
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2005 Dec; 31(6):567-74. PubMed ID: 16361782
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantitative investigations of quantum coherence for a light-harvesting protein at conditions simulating photosynthesis.
    Turner DB; Dinshaw R; Lee KK; Belsley MS; Wilk KE; Curmi PM; Scholes GD
    Phys Chem Chem Phys; 2012 Apr; 14(14):4857-74. PubMed ID: 22374579
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Redox Conditions Affect Ultrafast Exciton Transport in Photosynthetic Pigment-Protein Complexes.
    Allodi MA; Otto JP; Sohail SH; Saer RG; Wood RE; Rolczynski BS; Massey SC; Ting PC; Blankenship RE; Engel GS
    J Phys Chem Lett; 2018 Jan; 9(1):89-95. PubMed ID: 29236502
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Vibrational beatings conceal evidence of electronic coherence in the FMO light-harvesting complex.
    Tempelaar R; Jansen TL; Knoester J
    J Phys Chem B; 2014 Nov; 118(45):12865-72. PubMed ID: 25321492
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Energy-scales convergence for optimal and robust quantum transport in photosynthetic complexes.
    Mohseni M; Shabani A; Lloyd S; Rabitz H
    J Chem Phys; 2014 Jan; 140(3):035102. PubMed ID: 25669414
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.