These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
294 related articles for article (PubMed ID: 15800892)
1. Electrostatic energies and forces computed without explicit interparticle interactions: a linear time complexity formulation. Petrella RJ; Karplus M J Comput Chem; 2005 Jun; 26(8):755-87. PubMed ID: 15800892 [TBL] [Abstract][Full Text] [Related]
2. Ab initio calculation of electrostatic multipoles with Wannier functions for large-scale biomolecular simulations. Sagui C; Pomorski P; Darden TA; Roland C J Chem Phys; 2004 Mar; 120(9):4530-44. PubMed ID: 15268621 [TBL] [Abstract][Full Text] [Related]
3. A new force field (ECEPP-05) for peptides, proteins, and organic molecules. Arnautova YA; Jagielska A; Scheraga HA J Phys Chem B; 2006 Mar; 110(10):5025-44. PubMed ID: 16526746 [TBL] [Abstract][Full Text] [Related]
4. Simple and accurate scheme to compute electrostatic interaction: zero-dipole summation technique for molecular system and application to bulk water. Fukuda I; Kamiya N; Yonezawa Y; Nakamura H J Chem Phys; 2012 Aug; 137(5):054314. PubMed ID: 22894355 [TBL] [Abstract][Full Text] [Related]
5. Application of the frozen atom approximation to the GB/SA continuum model for solvation free energy. Guvench O; Weiser J; Shenkin P; Kolossváry I; Still WC J Comput Chem; 2002 Jan; 23(2):214-21. PubMed ID: 11924735 [TBL] [Abstract][Full Text] [Related]
6. Boundary element solution of the linear Poisson-Boltzmann equation and a multipole method for the rapid calculation of forces on macromolecules in solution. Bordner AJ; Huber GA J Comput Chem; 2003 Feb; 24(3):353-67. PubMed ID: 12548727 [TBL] [Abstract][Full Text] [Related]
7. Electrostatic field-adapted molecular fractionation with conjugated caps for energy calculations of charged biomolecules. Jiang N; Ma J; Jiang Y J Chem Phys; 2006 Mar; 124(11):114112. PubMed ID: 16555879 [TBL] [Abstract][Full Text] [Related]
8. Cutoff size need not strongly influence molecular dynamics results for solvated polypeptides. Beck DA; Armen RS; Daggett V Biochemistry; 2005 Jan; 44(2):609-16. PubMed ID: 15641786 [TBL] [Abstract][Full Text] [Related]
9. Calculation of electrostatic interaction energies in molecular dimers from atomic multipole moments obtained by different methods of electron density partitioning. Volkov A; Coppens P J Comput Chem; 2004 May; 25(7):921-34. PubMed ID: 15027105 [TBL] [Abstract][Full Text] [Related]
10. Development of hardware accelerator for molecular dynamics simulations: a computation board that calculates nonbonded interactions in cooperation with fast multipole method. Amisaki T; Toyoda S; Miyagawa H; Kitamura K J Comput Chem; 2003 Apr; 24(5):582-92. PubMed ID: 12632472 [TBL] [Abstract][Full Text] [Related]
11. Multiple-site titration and molecular modeling: two rapid methods for computing energies and forces for ionizable groups in proteins. Gilson MK Proteins; 1993 Mar; 15(3):266-82. PubMed ID: 8456096 [TBL] [Abstract][Full Text] [Related]
12. Leading RNA tertiary interactions: structures, energies, and water insertion of A-minor and P-interactions. A quantum chemical view. Sponer JE; Réblova K; Mokdad A; Sychrovský V; Leszczynski J; Sponer J J Phys Chem B; 2007 Aug; 111(30):9153-64. PubMed ID: 17602515 [TBL] [Abstract][Full Text] [Related]
13. Towards an accurate representation of electrostatics in classical force fields: efficient implementation of multipolar interactions in biomolecular simulations. Sagui C; Pedersen LG; Darden TA J Chem Phys; 2004 Jan; 120(1):73-87. PubMed ID: 15267263 [TBL] [Abstract][Full Text] [Related]
14. Stabilization of protein crystals by electrostatic interactions as revealed by a numerical approach. Takahashi T; Endo S; Nagayama K J Mol Biol; 1993 Nov; 234(2):421-32. PubMed ID: 7693951 [TBL] [Abstract][Full Text] [Related]
15. Protein simulations using techniques suitable for very large systems: the cell multipole method for nonbond interactions and the Newton-Euler inverse mass operator method for internal coordinate dynamics. Mathiowetz AM; Jain A; Karasawa N; Goddard WA Proteins; 1994 Nov; 20(3):227-47. PubMed ID: 7892172 [TBL] [Abstract][Full Text] [Related]
16. Electrostatic potentials of proteins in water: a structured continuum approach. Hildebrandt A; Blossey R; Rjasanow S; Kohlbacher O; Lenhof HP Bioinformatics; 2007 Jan; 23(2):e99-103. PubMed ID: 17237112 [TBL] [Abstract][Full Text] [Related]
17. Efficient table lookup without inverse square roots for calculation of pair wise atomic interactions in classical simulations. Nilsson L J Comput Chem; 2009 Jul; 30(9):1490-8. PubMed ID: 19072764 [TBL] [Abstract][Full Text] [Related]
18. pKa calculations in solution and proteins with QM/MM free energy perturbation simulations: a quantitative test of QM/MM protocols. Riccardi D; Schaefer P; Cui Q J Phys Chem B; 2005 Sep; 109(37):17715-33. PubMed ID: 16853267 [TBL] [Abstract][Full Text] [Related]
19. Interaction energies between glycopeptide antibiotics and substrates in complexes determined by X-ray crystallography: application of a theoretical databank of aspherical atoms and a symmetry-adapted perturbation theory-based set of interatomic potentials. Li X; Volkov AV; Szalewicz K; Coppens P Acta Crystallogr D Biol Crystallogr; 2006 Jun; 62(Pt 6):639-47. PubMed ID: 16699191 [TBL] [Abstract][Full Text] [Related]
20. Computation of electrostatic forces between solvated molecules determined by the Poisson-Boltzmann equation using a boundary element method. Lu B; Zhang D; McCammon JA J Chem Phys; 2005 Jun; 122(21):214102. PubMed ID: 15974723 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]