These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 15800962)

  • 21. Toward immunoassay chips: Facile immobilization of antibodies on cyclic olefin copolymer substrates through pre-activated polymer adlayers.
    Sung D; Shin DH; Jon S
    Biosens Bioelectron; 2011 May; 26(9):3967-72. PubMed ID: 21489776
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microfluidic devices with photodefinable pseudo-valves for protein separation.
    Fan ZH
    Methods Mol Biol; 2009; 544():43-52. PubMed ID: 19488692
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cyclic Olefin Copolymer Microfluidic Devices for Forensic Applications.
    Bruijns B; Veciana A; Tiggelaar R; Gardeniers H
    Biosensors (Basel); 2019 Jul; 9(3):. PubMed ID: 31277382
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Underivatized cyclic olefin copolymer as substrate material and stationary phase for capillary and microchip electrochromatography.
    Gustafsson O; Mogensen KB; Kutter JP
    Electrophoresis; 2008 Aug; 29(15):3145-52. PubMed ID: 18618461
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improving assay feasibility and biocompatibility of 3D cyclic olefin copolymer microwells by superhydrophilic modification via ultrasonic spray deposition of polyvinyl alcohol.
    Jagannath A; Yu M; Li J; Zhang N; Gilchrist MD
    Biomater Adv; 2024 Oct; 163():213934. PubMed ID: 38954877
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microchannel networks for electrophoretic separations.
    Rossier JS; Schwarz A; Reymond F; Ferrigno R; Bianchi F; Girault HH
    Electrophoresis; 1999; 20(4-5):727-31. PubMed ID: 10344240
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multistage isoelectric focusing in a polymeric microfluidic chip.
    Cui H; Horiuchi K; Dutta P; Ivory CF
    Anal Chem; 2005 Dec; 77(24):7878-86. PubMed ID: 16351133
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Poly(vinyl alcohol)-coated microfluidic devices for high-performance microchip electrophoresis.
    Belder D; Deege A; Kohler F; Ludwig M
    Electrophoresis; 2002 Oct; 23(20):3567-73. PubMed ID: 12412126
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fabrication of discontinuous surface patterns within microfluidic channels using photodefinable vapor-based polymer coatings.
    Chen HY; Lahann J
    Anal Chem; 2005 Nov; 77(21):6909-14. PubMed ID: 16255589
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Injection molded microfluidic chips featuring integrated interconnects.
    Mair DA; Geiger E; Pisano AP; Fréchet JM; Svec F
    Lab Chip; 2006 Oct; 6(10):1346-54. PubMed ID: 17102848
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microfluidic based platform for characterization of protein interactions in hydrogel nanoenvironments.
    Moorthy J; Burgess R; Yethiraj A; Beebe D
    Anal Chem; 2007 Jul; 79(14):5322-7. PubMed ID: 17569500
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of separation length and voltage on isoelectric focusing in a plastic microfluidic device.
    Das C; Fan ZH
    Electrophoresis; 2006 Sep; 27(18):3619-26. PubMed ID: 16915565
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermoplastic microfluidic device for on-chip purification of nucleic acids for disposable diagnostics.
    Bhattacharyya A; Klapperich CM
    Anal Chem; 2006 Feb; 78(3):788-92. PubMed ID: 16448052
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Charge tunable zwitterionic polyampholyte layers formed in cyclic olefin copolymer microchannels through photochemical graft polymerization.
    Peng X; Zhao L; Du G; Wei X; Guo J; Wang X; Guo G; Pu Q
    ACS Appl Mater Interfaces; 2013 Feb; 5(3):1017-23. PubMed ID: 23331535
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Two-dimensional protein separation in microfluidic devices.
    Chen H; Fan ZH
    Electrophoresis; 2009 Mar; 30(5):758-65. PubMed ID: 19197899
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Permanent surface modification of polymeric capillary electrophoresis microchips for protein and peptide analysis.
    Liu J; Lee ML
    Electrophoresis; 2006 Sep; 27(18):3533-46. PubMed ID: 16927422
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fabrication of a hybrid PDMS/SU-8/quartz microfluidic chip for enhancing UV absorption whole-channel imaging detection sensitivity and application for isoelectric focusing of proteins.
    Ou J; Glawdel T; Ren CL; Pawliszyn J
    Lab Chip; 2009 Jul; 9(13):1926-32. PubMed ID: 19532968
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A microfluidic device for performing pressure-driven separations.
    Dutta D; Ramsey JM
    Lab Chip; 2011 Sep; 11(18):3081-8. PubMed ID: 21789335
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microfluidic high-resolution free-flow isoelectric focusing.
    Kohlheyer D; Eijkel JC; Schlautmann S; van den Berg A; Schasfoort RB
    Anal Chem; 2007 Nov; 79(21):8190-8. PubMed ID: 17902700
    [TBL] [Abstract][Full Text] [Related]  

  • 40. New non-covalent strategies for stable surface treatment of thermoplastic chips.
    Perez-Toralla K; Champ J; Mohamadi MR; Braun O; Malaquin L; Viovy JL; Descroix S
    Lab Chip; 2013 Nov; 13(22):4409-18. PubMed ID: 24061577
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.