These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 15801728)
1. Headspace water-based liquid-phase microextraction. Zhang J; Su T; Lee HK Anal Chem; 2005 Apr; 77(7):1988-92. PubMed ID: 15801728 [TBL] [Abstract][Full Text] [Related]
2. In-line coupling headspace liquid-phase microextraction with capillary electrophoresis. Xie HY; He YZ; Gan WE; Yu CZ; Han F; Ling DS J Chromatogr A; 2010 Feb; 1217(8):1203-7. PubMed ID: 20034631 [TBL] [Abstract][Full Text] [Related]
3. Ionic liquid-based dispersive liquid-liquid microextraction with back-extraction coupled with capillary electrophoresis to determine phenolic compounds. Zhou C; Tong S; Chang Y; Jia Q; Zhou W Electrophoresis; 2012 Apr; 33(8):1331-8. PubMed ID: 22589114 [TBL] [Abstract][Full Text] [Related]
4. Development and application of microporous hollow fiber protected liquid-phase microextraction via gaseous diffusion to the determination of phenols in water. Zhang J; Su T; Lee HK J Chromatogr A; 2006 Jul; 1121(1):10-5. PubMed ID: 16696990 [TBL] [Abstract][Full Text] [Related]
5. Coupling of ionic liquid-based headspace single-drop microextraction with GC for sensitive detection of phenols. Zhao FQ; Li J; Zeng BZ J Sep Sci; 2008 Sep; 31(16-17):3045-9. PubMed ID: 18704999 [TBL] [Abstract][Full Text] [Related]
6. Development of a novel ultrasound-assisted headspace liquid-phase microextraction and its application to the analysis of chlorophenols in real aqueous samples. Xu H; Liao Y; Yao J J Chromatogr A; 2007 Oct; 1167(1):1-8. PubMed ID: 17765249 [TBL] [Abstract][Full Text] [Related]
7. Trace determination of organophosphorus pesticides in environmental samples by temperature-controlled ionic liquid dispersive liquid-phase microextraction. Zhou Q; Bai H; Xie G; Xiao J J Chromatogr A; 2008 Apr; 1188(2):148-53. PubMed ID: 18346747 [TBL] [Abstract][Full Text] [Related]
8. Automation and optimization of liquid-phase microextraction by gas chromatography. Ouyang G; Zhao W; Pawliszyn J J Chromatogr A; 2007 Jan; 1138(1-2):47-54. PubMed ID: 17116305 [TBL] [Abstract][Full Text] [Related]
9. Enrichment of phenols from water with in-situ derivatization by in-tube solid phase microextraction-solvent desorption prior to off-line gas chromatographic determination with large-volume injection. Olejniczak J; Staniewski J Anal Chim Acta; 2007 Apr; 588(1):64-72. PubMed ID: 17386794 [TBL] [Abstract][Full Text] [Related]
10. On-line coupling of ionic liquid-based single-drop microextraction with capillary electrophoresis for sensitive detection of phenols. Wang Q; Qiu H; Li J; Liu X; Jiang S J Chromatogr A; 2010 Aug; 1217(33):5434-9. PubMed ID: 20621300 [TBL] [Abstract][Full Text] [Related]
11. On-column liquid-liquid-liquid microextraction coupled with base stacking as a dual preconcentration method for capillary zone electrophoresis. Xie HY; He YZ; Gan WE; Fu GN; Li L; Han F; Gao Y J Chromatogr A; 2009 Apr; 1216(15):3353-9. PubMed ID: 19203764 [TBL] [Abstract][Full Text] [Related]
13. Study on the performance of the headspace liquid-phase microextraction, gas chromatography-mass spectrometry in the determination of sorbic and benzoic acids in soft drinks and environmental water samples. Farahani H; Ganjali MR; Dinarvand R; Norouzi P J Agric Food Chem; 2009 Apr; 57(7):2633-9. PubMed ID: 19334751 [TBL] [Abstract][Full Text] [Related]
14. Determination of organophosphorous pesticides in wastewater samples using binary-solvent liquid-phase microextraction and solid-phase microextraction: a comparative study. Basheer C; Alnedhary AA; Rao BS; Lee HK Anal Chim Acta; 2007 Dec; 605(2):147-52. PubMed ID: 18036377 [TBL] [Abstract][Full Text] [Related]
16. Headspace single drop and hollow fiber liquid phase microextractions for HPLC determination of phenols. Wu Y; Hu B; Hou Y J Sep Sci; 2008 Dec; 31(21):3772-81. PubMed ID: 18956384 [TBL] [Abstract][Full Text] [Related]
17. Simultaneous derivatization and extraction of free cyanide in biological samples with home-made hollow fiber-protected headspace liquid-phase microextraction followed by capillary electrophoresis with UV detection. Meng L; Liu X; Wang B; Shen G; Wang Z; Guo M J Chromatogr B Analyt Technol Biomed Life Sci; 2009 Nov; 877(29):3645-51. PubMed ID: 19773203 [TBL] [Abstract][Full Text] [Related]
18. Gas purge microsyringe extraction for quantitative direct gas chromatographic-mass spectrometric analysis of volatile and semivolatile chemicals. Yang C; Piao X; Qiu J; Wang X; Ren C; Li D J Chromatogr A; 2011 Mar; 1218(12):1549-55. PubMed ID: 21333296 [TBL] [Abstract][Full Text] [Related]
19. Liquid-phase microextraction combined with high-performance liquid chromatography for the determination of local anaesthetics in human urine. Ma M; Kang S; Zhao Q; Chen B; Yao S J Pharm Biomed Anal; 2006 Jan; 40(1):128-35. PubMed ID: 16076540 [TBL] [Abstract][Full Text] [Related]
20. Dispersive liquid-liquid microextraction combined with semi-automated in-syringe back extraction as a new approach for the sample preparation of ionizable organic compounds prior to liquid chromatography. Melwanki MB; Fuh MR J Chromatogr A; 2008 Jul; 1198-1199():1-6. PubMed ID: 18513730 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]