BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 15801777)

  • 1. Lipase-catalyzed acyl exchange of soybean phosphatidylcholine in n-Hexane: a critical evaluation of both acyl incorporation and product recovery.
    Vikbjerg AF; Mu H; Xu X
    Biotechnol Prog; 2005; 21(2):397-404. PubMed ID: 15801777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring of monooctanoylphosphatidylcholine synthesis by enzymatic acidolysis between soybean phosphatidylcholine and caprylic acid by thin-layer chromatography with a flame ionization detector.
    Vikbjerg AF; Mu H; Xu X
    J Agric Food Chem; 2005 May; 53(10):3937-42. PubMed ID: 15884820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increase of Oleic Acid Content in Phosphatidylcholine through Lipase-catalyzed Interesterification: Optimization by Response Surface Methodology.
    Yang G; Yang L
    J Oleo Sci; 2015; 64(6):673-82. PubMed ID: 25891113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Candida rugosa lipase LIP1-catalyzed transesterification to produce human milk fat substitute.
    Srivastava A; Akoh CC; Chang SW; Lee GC; Shaw JF
    J Agric Food Chem; 2006 Jul; 54(14):5175-81. PubMed ID: 16819932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of structured phospholipids by immobilized phospholipase A2 catalyzed acidolysis.
    Vikbjerg AF; Mu H; Xu X
    J Biotechnol; 2007 Feb; 128(3):545-54. PubMed ID: 17150274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipase-catalyzed acidolysis of tripalmitin with hazelnut oil fatty acids and stearic acid to produce human milk fat substitutes.
    Sahin N; Akoh CC; Karaali A
    J Agric Food Chem; 2005 Jul; 53(14):5779-83. PubMed ID: 15998148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipase-catalyzed acidolysis of olive oil with capric acid: effect of water activity on incorporation and acyl migration.
    Oh JE; Lee KW; Park HK; Kim JY; Kwon KI; Kim JW; Kim HR; Kim IH
    J Agric Food Chem; 2009 Oct; 57(19):9280-3. PubMed ID: 19728714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphatidylcholine enrichment with medium chain fatty acids by immobilized phospholipase A(1) -catalyzed acidolysis.
    Ochoa AA; Hernández-Becerra JA; Cavazos-Garduño A; García HS; Vernon-Carter EJ
    Biotechnol Prog; 2013; 29(1):230-6. PubMed ID: 23074091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fatty acid selectivity of lipases during acidolysis reaction between oleic acid and monoacid triacylglycerols.
    Karabulut I; Durmaz G; Hayaloglu AA
    J Agric Food Chem; 2009 Nov; 57(21):10466-70. PubMed ID: 19835376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved enzyme stability in lipase-catalyzed synthesis of fatty acid ethyl ester from soybean oil.
    Costa Rodrigues R; Volpato G; Wada K; Záchia Ayub MA
    Appl Biochem Biotechnol; 2009 Mar; 152(3):394-404. PubMed ID: 18548204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymatic production of infant milk fat analogs containing palmitic acid: optimization of reactions by response surface methodology.
    Maduko CO; Akoh CC; Park YW
    J Dairy Sci; 2007 May; 90(5):2147-54. PubMed ID: 17430912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of structured triacylglycerols by lipase-catalyzed acidolysis in a packed bed bioreactor.
    Xu X; Fomuso LB; Akoh CC
    J Agric Food Chem; 2000 Jan; 48(1):3-10. PubMed ID: 10637041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipase-catalyzed incorporation of different Fatty acids into tripalmitin-enriched triacylglycerols: effect of reaction parameters.
    Qin XL; Yang B; Huang HH; Wang YH
    J Agric Food Chem; 2012 Mar; 60(9):2377-84. PubMed ID: 22360498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of ethyl isovalerate using Rhizomucor miehei lipase: optimization.
    Chowdary GV; Prapulla SG
    Prikl Biokhim Mikrobiol; 2003; 39(3):278-83. PubMed ID: 12754824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Production of functional lipids by lipase-catalyzed acidolysis of lard in solvent free system].
    Zhao HZ; Lu ZX; Bie XM; Lü FX; Liu ZM
    Sheng Wu Gong Cheng Xue Bao; 2005 May; 21(3):493-6. PubMed ID: 16108382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimized butyl butyrate synthesis catalyzed by Thermomyces lanuginosus lipase.
    Martins AB; Friedrich JL; Rodrigues RC; Garcia-Galan C; Fernandez-Lafuente R; Ayub MA
    Biotechnol Prog; 2013; 29(6):1416-21. PubMed ID: 23946156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimal formation of hexyl laurate by Lipozyme IM-77 in solvent-free system.
    Chang SW; Shaw JF; Shieh CH; Shieh CJ
    J Agric Food Chem; 2006 Sep; 54(19):7125-9. PubMed ID: 16968072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transesterification of phosphatidylcholine in sn-1 position through direct use of lipase-producing Rhizopus oryzae cells as whole-cell biocatalyst.
    Hama S; Miura K; Yoshida A; Noda H; Fukuda H; Kondo A
    Appl Microbiol Biotechnol; 2011 Jun; 90(5):1731-8. PubMed ID: 21468705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling and optimization of phospholipase A₁-catalyzed hydrolysis of phosphatidylcholine using response surface methodology for lysophosphatidylcholine production.
    Lim CW; Kim BH; Kim IH; Lee MW
    Biotechnol Prog; 2015; 31(1):35-41. PubMed ID: 25380220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A kinetic study of isoamyl acetate synthesis by immobilized lipase-catalyzed acetylation in n-hexane.
    Romero MD; Calvo L; Alba C; Daneshfar A
    J Biotechnol; 2007 Jan; 127(2):269-77. PubMed ID: 16959353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.