These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 15801810)
1. Redistribution of metabolic fluxes in the central aerobic metabolic pathway of E. coli mutant strains with deletion of the ackA-pta and poxB pathways for the synthesis of isoamyl acetate. Dittrich CR; Vadali RV; Bennett GN; San KY Biotechnol Prog; 2005; 21(2):627-31. PubMed ID: 15801810 [TBL] [Abstract][Full Text] [Related]
2. Production of isoamyl acetate in ackA-pta and/or ldh mutants of Escherichia coli with overexpression of yeast ATF2. Vadali RV; Horton CE; Rudolph FB; Bennett GN; San KY Appl Microbiol Biotechnol; 2004 Feb; 63(6):698-704. PubMed ID: 14586577 [TBL] [Abstract][Full Text] [Related]
3. Characterization of the acetate-producing pathways in Escherichia coli. Dittrich CR; Bennett GN; San KY Biotechnol Prog; 2005; 21(4):1062-7. PubMed ID: 16080684 [TBL] [Abstract][Full Text] [Related]
4. Enhanced isoamyl acetate production upon manipulation of the acetyl-CoA node in Escherichia coli. Vadali RV; Bennett GN; San KY Biotechnol Prog; 2004; 20(3):692-7. PubMed ID: 15176870 [TBL] [Abstract][Full Text] [Related]
5. Effect of inactivation of nuo and ackA-pta on redistribution of metabolic fluxes in Escherichia coli. Yang YT; Bennett GN; San KY Biotechnol Bioeng; 1999 Nov; 65(3):291-7. PubMed ID: 10486127 [TBL] [Abstract][Full Text] [Related]
6. Metabolic engineering of the anaerobic central metabolic pathway in Escherichia coli for the simultaneous anaerobic production of isoamyl acetate and succinic acid. Dittrich CR; Bennett GN; San KY Biotechnol Prog; 2009; 25(5):1304-9. PubMed ID: 19774663 [TBL] [Abstract][Full Text] [Related]
7. Expression of the pfl gene and resulting metabolite flux distribution in nuo and ackA-pta E. coli mutant strains. Singh R; Yang YT; Lu B; Bennett GN; San KY Biotechnol Prog; 2006; 22(3):898-902. PubMed ID: 16739977 [TBL] [Abstract][Full Text] [Related]
8. Production of polyhydroxyalkanoates by Escherichia coli mutants with defected mixed acid fermentation pathways. Jian J; Zhang SQ; Shi ZY; Wang W; Chen GQ; Wu Q Appl Microbiol Biotechnol; 2010 Aug; 87(6):2247-56. PubMed ID: 20535465 [TBL] [Abstract][Full Text] [Related]
9. Applicability of CoA/acetyl-CoA manipulation system to enhance isoamyl acetate production in Escherichia coli. Vadali RV; Bennett GN; San KY Metab Eng; 2004 Oct; 6(4):294-9. PubMed ID: 15491859 [TBL] [Abstract][Full Text] [Related]
10. Effect of lpdA gene knockout on the metabolism in Escherichia coli based on enzyme activities, intracellular metabolite concentrations and metabolic flux analysis by 13C-labeling experiments. Li M; Ho PY; Yao S; Shimizu K J Biotechnol; 2006 Mar; 122(2):254-66. PubMed ID: 16310273 [TBL] [Abstract][Full Text] [Related]
11. Glucose metabolism at high density growth of E. coli B and E. coli K: differences in metabolic pathways are responsible for efficient glucose utilization in E. coli B as determined by microarrays and Northern blot analyses. Phue JN; Noronha SB; Hattacharyya R; Wolfe AJ; Shiloach J Biotechnol Bioeng; 2005 Jun; 90(7):805-20. PubMed ID: 15806547 [TBL] [Abstract][Full Text] [Related]
12. Aerobic production of isoamyl acetate by overexpression of the yeast alcohol acetyl-transferases AFT1 and AFT2 in Escherichia coli and using low-cost fermentation ingredients. Singh R; Vadlani PV; Harrison ML; Bennett GN; San KY Bioprocess Biosyst Eng; 2008 Jun; 31(4):299-306. PubMed ID: 17891501 [TBL] [Abstract][Full Text] [Related]
13. Transcription levels of key metabolic genes are the cause for different glucose utilization pathways in E. coli B (BL21) and E. coli K (JM109). Phue JN; Shiloach J J Biotechnol; 2004 Apr; 109(1-2):21-30. PubMed ID: 15063611 [TBL] [Abstract][Full Text] [Related]
14. Genetic reconstruction of the aerobic central metabolism in Escherichia coli for the absolute aerobic production of succinate. Lin H; Bennett GN; San KY Biotechnol Bioeng; 2005 Jan; 89(2):148-56. PubMed ID: 15543598 [TBL] [Abstract][Full Text] [Related]
15. Enhancement of lactate and succinate formation in adhE or pta-ackA mutants of NADH dehydrogenase-deficient Escherichia coli. Yun NR; San KY; Bennett GN J Appl Microbiol; 2005; 99(6):1404-12. PubMed ID: 16313413 [TBL] [Abstract][Full Text] [Related]
17. Deletion of poxB, pta, and ackA improves 1,3-propanediol production by Klebsiella pneumoniae. Lin J; Zhang Y; Xu D; Xiang G; Jia Z; Fu S; Gong H Appl Microbiol Biotechnol; 2016 Mar; 100(6):2775-84. PubMed ID: 26695159 [TBL] [Abstract][Full Text] [Related]
18. Comparison of different strategies to reduce acetate formation in Escherichia coli. De Mey M; Lequeux GJ; Beauprez JJ; Maertens J; Van Horen E; Soetaert WK; Vanrolleghem PA; Vandamme EJ Biotechnol Prog; 2007; 23(5):1053-63. PubMed ID: 17715942 [TBL] [Abstract][Full Text] [Related]
19. Construction and characterization of pta gene-deleted mutant of Clostridium tyrobutyricum for enhanced butyric acid fermentation. Zhu Y; Liu X; Yang ST Biotechnol Bioeng; 2005 Apr; 90(2):154-66. PubMed ID: 15759261 [TBL] [Abstract][Full Text] [Related]
20. Acetate accumulation through alternative metabolic pathways in ackA (-) pta (-) poxB (-) triple mutant in E. coli B (BL21). Phue JN; Lee SJ; Kaufman JB; Negrete A; Shiloach J Biotechnol Lett; 2010 Dec; 32(12):1897-903. PubMed ID: 20703804 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]