These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 15802309)

  • 1. Biomechanical model of the xylem vessels in vascular plants.
    Karam GN
    Ann Bot; 2005 Jun; 95(7):1179-86. PubMed ID: 15802309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Xylem vessel type and structure influence the water transport characteristics of Panax notoginseng.
    Xu T; Li Z; Bao S; Su Y; Su Z; Zhi S; Zheng E
    PLoS One; 2023; 18(3):e0281080. PubMed ID: 36877678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Easy Come, Easy Go: Capillary Forces Enable Rapid Refilling of Embolized Primary Xylem Vessels.
    Rolland V; Bergstrom DM; Lenné T; Bryant G; Chen H; Wolfe J; Holbrook NM; Stanton DE; Ball MC
    Plant Physiol; 2015 Aug; 168(4):1636-47. PubMed ID: 26091819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water transport in plants obeys Murray's law.
    McCulloh KA; Sperry JS; Adler FR
    Nature; 2003 Feb; 421(6926):939-42. PubMed ID: 12607000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Freezing regime and trade-offs with water transport efficiency generate variation in xylem structure across diploid populations of Larrea sp. (Zygophyllaceae).
    Medeiros JS; Pockman WT
    Am J Bot; 2014 Apr; 101(4):598-607. PubMed ID: 24699537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The relevance of xylem network structure for plant hydraulic efficiency and safety.
    Loepfe L; Martinez-Vilalta J; Piñol J; Mencuccini M
    J Theor Biol; 2007 Aug; 247(4):788-803. PubMed ID: 17509617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A mathematical model of water and nutrient transport in xylem vessels of a wheat plant.
    Payvandi S; Daly KR; Jones DL; Talboys P; Zygalakis KC; Roose T
    Bull Math Biol; 2014 Mar; 76(3):566-96. PubMed ID: 24557938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conflicting demands on angiosperm xylem: Tradeoffs among storage, transport and biomechanics.
    Pratt RB; Jacobsen AL
    Plant Cell Environ; 2017 Jun; 40(6):897-913. PubMed ID: 27861981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methods for measuring plant vulnerability to cavitation: a critical review.
    Cochard H; Badel E; Herbette S; Delzon S; Choat B; Jansen S
    J Exp Bot; 2013 Nov; 64(15):4779-91. PubMed ID: 23888067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Getting variable xylem hydraulic resistance under control: interplay of structure and function.
    Zwieniecki MA; Secchi F
    Tree Physiol; 2012 Dec; 32(12):1431-3. PubMed ID: 23243066
    [No Abstract]   [Full Text] [Related]  

  • 11. Cutting stems before relaxing xylem tension induces artefacts in Vitis coignetiae, as evidenced by magnetic resonance imaging.
    Ogasa MY; Utsumi Y; Miki NH; Yazaki K; Fukuda K
    Plant Cell Environ; 2016 Feb; 39(2):329-37. PubMed ID: 26234764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The flow and dispersion of water in the vascular network of dicotyledonous leaves.
    Jeje AA
    Biorheology; 1985; 22(4):285-302. PubMed ID: 4063485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The graviosmotic hypothesis of xylem transport of water in plants.
    Kargol M
    Gen Physiol Biophys; 1992 Oct; 11(5):469-87. PubMed ID: 1291448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional water flow pathways and hydraulic regulation in the xylem network of Arabidopsis.
    Park J; Kim HK; Ryu J; Ahn S; Lee SJ; Hwang I
    Plant Cell Physiol; 2015 Mar; 56(3):520-31. PubMed ID: 25520406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of death in providing lifeline to plants.
    Dahiya P
    Trends Plant Sci; 2003 Oct; 8(10):462-5. PubMed ID: 14557040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Root pressure and beyond: energetically uphill water transport into xylem vessels?
    Wegner LH
    J Exp Bot; 2014 Feb; 65(2):381-93. PubMed ID: 24311819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An analysis of long-distance water transport in the soybean stem using H215O.
    Ohya T; Tanoi K; Hamada Y; Okabe H; Rai H; Hojo J; Suzuki K; Nakanishi TM
    Plant Cell Physiol; 2008 May; 49(5):718-29. PubMed ID: 18372296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Avoiding transport bottlenecks in an expanding root system: xylem vessel development in fibrous and pioneer roots under field conditions.
    Bagniewska-Zadworna A; Byczyk J; Eissenstat DM; Oleksyn J; Zadworny M
    Am J Bot; 2012 Sep; 99(9):1417-26. PubMed ID: 22917946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of HRCT-derived xylem network reveals reverse flow in some vessels.
    Lee EF; Matthews MA; McElrone AJ; Phillips RJ; Shackel KA; Brodersen CR
    J Theor Biol; 2013 Sep; 333():146-55. PubMed ID: 23743143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Self-regulation of xylem pressure in barley roots under salt stress].
    Zhu JJ; Bai XF; Zhang P; Bu QM
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2005 Feb; 31(1):97-102. PubMed ID: 15692185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.