BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 15803158)

  • 1. The role of calmodulin as a signal integrator for synaptic plasticity.
    Xia Z; Storm DR
    Nat Rev Neurosci; 2005 Apr; 6(4):267-76. PubMed ID: 15803158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ca2+/calmodulin signaling in NMDA-induced synaptic plasticity.
    Gnegy ME
    Crit Rev Neurobiol; 2000; 14(2):91-129. PubMed ID: 11513244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coexistence of muscarinic long-term depression with electrically induced long-term potentiation and depression at CA3-CA1 synapses.
    McCutchen E; Scheiderer CL; Dobrunz LE; McMahon LL
    J Neurophysiol; 2006 Dec; 96(6):3114-21. PubMed ID: 17005622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insulin modulates hippocampal activity-dependent synaptic plasticity in a N-methyl-d-aspartate receptor and phosphatidyl-inositol-3-kinase-dependent manner.
    van der Heide LP; Kamal A; Artola A; Gispen WH; Ramakers GM
    J Neurochem; 2005 Aug; 94(4):1158-66. PubMed ID: 16092951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induction mechanisms and modulation of bidirectional burst stimulation-induced synaptic plasticity in the hippocampus.
    Clark K; Normann C
    Eur J Neurosci; 2008 Jul; 28(2):279-87. PubMed ID: 18702699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NMDA receptor subunit composition controls synaptic plasticity by regulating binding to CaMKII.
    Barria A; Malinow R
    Neuron; 2005 Oct; 48(2):289-301. PubMed ID: 16242409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The role of calcineurin on the induction of synaptic plasticity].
    Kato K
    Nihon Shinkei Seishin Yakurigaku Zasshi; 2000 Nov; 20(5):189-98. PubMed ID: 11326544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synaptic plasticity in learning and memory: stress effects in the hippocampus.
    Howland JG; Wang YT
    Prog Brain Res; 2008; 169():145-58. PubMed ID: 18394472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term potentiation inhibition by low-level N-methyl-D-aspartate receptor activation involves calcineurin, nitric oxide, and p38 mitogen-activated protein kinase.
    Izumi Y; Tokuda K; Zorumski CF
    Hippocampus; 2008; 18(3):258-65. PubMed ID: 18000819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of synaptic transmission and plasticity by cell adhesion and repulsion molecules.
    Dityatev A; Bukalo O; Schachner M
    Neuron Glia Biol; 2008 Aug; 4(3):197-209. PubMed ID: 19674506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ubiquitous plasticity and memory storage.
    Kim SJ; Linden DJ
    Neuron; 2007 Nov; 56(4):582-92. PubMed ID: 18031678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel presynaptic mechanisms for coincidence detection in synaptic plasticity.
    Duguid I; Sjöström PJ
    Curr Opin Neurobiol; 2006 Jun; 16(3):312-22. PubMed ID: 16713246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of AMPA receptor trafficking in NMDA receptor-dependent synaptic plasticity in the rat lateral amygdala.
    Yu SY; Wu DC; Liu L; Ge Y; Wang YT
    J Neurochem; 2008 Jul; 106(2):889-99. PubMed ID: 18466342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 'Synaptic tagging' and 'cross-tagging' and related associative reinforcement processes of functional plasticity as the cellular basis for memory formation.
    Frey S; Frey JU
    Prog Brain Res; 2008; 169():117-43. PubMed ID: 18394471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Common molecular pathways mediate long-term potentiation of synaptic excitation and slow synaptic inhibition.
    Huang CS; Shi SH; Ule J; Ruggiu M; Barker LA; Darnell RB; Jan YN; Jan LY
    Cell; 2005 Oct; 123(1):105-18. PubMed ID: 16213216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pre- and postsynaptic contributions to age-related alterations in corticostriatal synaptic plasticity.
    Akopian G; Walsh JP
    Synapse; 2006 Sep; 60(3):223-38. PubMed ID: 16739119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Muscarinic acetylcholine receptors and voltage-gated calcium channels contribute to bidirectional synaptic plasticity at CA1-subiculum synapses.
    Shor OL; Fidzinski P; Behr J
    Neurosci Lett; 2009 Jan; 449(3):220-3. PubMed ID: 19010390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activity-driven postsynaptic translocation of CaMKII.
    Merrill MA; Chen Y; Strack S; Hell JW
    Trends Pharmacol Sci; 2005 Dec; 26(12):645-53. PubMed ID: 16253351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N-methyl-D-aspartate receptor-dependent long-term potentiation in CA1 region affects synaptic expression of glutamate receptor subunits and associated proteins in the whole hippocampus.
    Zhong WX; Dong ZF; Tian M; Cao J; Xu L; Luo JH
    Neuroscience; 2006 Sep; 141(3):1399-413. PubMed ID: 16766131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Muscarinic receptor dependent long-term depression in rat visual cortex is PKC independent but requires ERK1/2 activation and protein synthesis.
    McCoy PA; McMahon LL
    J Neurophysiol; 2007 Oct; 98(4):1862-70. PubMed ID: 17634336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.