These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 15803281)

  • 1. Effects of silica on the bioactivity of calcium phosphate composites in vitro.
    Ning CQ; Mehta J; El-Ghannam A
    J Mater Sci Mater Med; 2005 Apr; 16(4):355-60. PubMed ID: 15803281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advanced bioceramic composite for bone tissue engineering: design principles and structure-bioactivity relationship.
    El-Ghannam AR
    J Biomed Mater Res A; 2004 Jun; 69(3):490-501. PubMed ID: 15127396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystallization behavior of silica-calcium phosphate biocomposites: XRD and FTIR studies.
    Ning CQ; Greish Y; El-Ghannam A
    J Mater Sci Mater Med; 2004 Nov; 15(11):1227-35. PubMed ID: 15880933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioactive ceramic composites sintered from hydroxyapatite and silica at 1,200 degrees C: preparation, microstructures and in vitro bone-like layer growth.
    Li XW; Yasuda HY; Umakoshi Y
    J Mater Sci Mater Med; 2006 Jun; 17(6):573-81. PubMed ID: 16691357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium phosphate formation and ion dissolution rates in silica gel-PDLLA composites.
    Korventausta J; Jokinen M; Rosling A; Peltola T; Yli-Urpo A
    Biomaterials; 2003 Dec; 24(28):5173-82. PubMed ID: 14568434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An in vitro evaluation of the Ca/P ratio for the cytocompatibility of nano-to-micron particulate calcium phosphates for bone regeneration.
    Liu H; Yazici H; Ergun C; Webster TJ; Bermek H
    Acta Biomater; 2008 Sep; 4(5):1472-9. PubMed ID: 18394980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biological effects and cytotoxicity of the composite composed by tricalcium phosphate and glutaraldehyde cross-linked gelatin.
    Lin FH; Yao CH; Sun JS; Liu HC; Huang CW
    Biomaterials; 1998 May; 19(10):905-17. PubMed ID: 9690832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioactive silica-collagen composite xerogels modified by calcium phosphate phases with adjustable mechanical properties for bone replacement.
    Heinemann S; Heinemann C; Bernhardt R; Reinstorf A; Nies B; Meyer M; Worch H; Hanke T
    Acta Biomater; 2009 Jul; 5(6):1979-90. PubMed ID: 19345651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro studies of novel CaO-SiO2-MgO system composite bioceramics.
    Ni S; Chang J; Chou L
    J Mater Sci Mater Med; 2008 Jan; 19(1):359-67. PubMed ID: 17607509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strong and bioactive composites containing nano-silica-fused whiskers for bone repair.
    Xu HH; Smith DT; Simon CG
    Biomaterials; 2004 Aug; 25(19):4615-26. PubMed ID: 15120507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compositional effects on the formation of a calcium phosphate layer and the response of osteoblast-like cells on polymer-bioactive glass composites.
    Lu HH; Tang A; Oh SC; Spalazzi JP; Dionisio K
    Biomaterials; 2005 Nov; 26(32):6323-34. PubMed ID: 15919111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of silicon on the formation of silk fibroin/calcium phosphate composite.
    Li L; Wei KM; Lin F; Kong XD; Yao JM
    J Mater Sci Mater Med; 2008 Feb; 19(2):577-82. PubMed ID: 17619986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of ionic products from bioactive glass dissolution on osteoblast proliferation and collagen production.
    Valerio P; Pereira MM; Goes AM; Leite MF
    Biomaterials; 2004 Jul; 25(15):2941-8. PubMed ID: 14967526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro evaluation of biocompatibility of beta-tricalcium phosphate-reinforced high-density polyethylene; an orthopedic composite.
    Homaeigohar SSh; Shokrgozar MA; Sadi AY; Khavandi A; Javadpour J; Hosseinalipour M
    J Biomed Mater Res A; 2005 Oct; 75(1):14-22. PubMed ID: 16092112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silicon effect on the composition and structure of nanocalcium phosphates: In vitro biocompatibility to human osteoblasts.
    Tomoaia G; Mocanu A; Vida-Simiti I; Jumate N; Bobos LD; Soritau O; Tomoaia-Cotisel M
    Mater Sci Eng C Mater Biol Appl; 2014 Apr; 37():37-47. PubMed ID: 24582220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beta-CaSiO3/beta-Ca3(PO4)2 composite materials for hard tissue repair: in vitro studies.
    Ni S; Lin K; Chang J; Chou L
    J Biomed Mater Res A; 2008 Apr; 85(1):72-82. PubMed ID: 17688291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro evaluation of degradation and cytotoxicity of a novel composite as a bone substitute.
    Liu BS; Yao CH; Chen YS; Hsu SH
    J Biomed Mater Res A; 2003 Dec; 67(4):1163-9. PubMed ID: 14624502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biphasic composite of calcium phosphate-based mesoporous silica as a novel bone drug delivery system.
    Prokopowicz M; Szewczyk A; Skwira A; SÄ…dej R; Walker G
    Drug Deliv Transl Res; 2020 Apr; 10(2):455-470. PubMed ID: 31820299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biocompatibility evaluation of hydroxyapatite/collagen nanocomposites doped with Zn+2.
    Santos MH; Valerio P; Goes AM; Leite MF; Heneine LG; Mansur HS
    Biomed Mater; 2007 Jun; 2(2):135-41. PubMed ID: 18458447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis, characterization of calcium phosphates/polyurethane composites for weight-bearing implants.
    Yoshii T; Dumas JE; Okawa A; Spengler DM; Guelcher SA
    J Biomed Mater Res B Appl Biomater; 2012 Jan; 100(1):32-40. PubMed ID: 21953899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.