These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 15803517)

  • 1. Molecular basis of perhydrolase activity in serine hydrolases.
    Bernhardt P; Hult K; Kazlauskas RJ
    Angew Chem Int Ed Engl; 2005 Apr; 44(18):2742-2746. PubMed ID: 15803517
    [No Abstract]   [Full Text] [Related]  

  • 2. Crystal Structure and Functional Characterization of an Esterase (EaEST) from Exiguobacterium antarcticum.
    Lee CW; Kwon S; Park SH; Kim BY; Yoo W; Ryu BH; Kim HW; Shin SC; Kim S; Park H; Kim TD; Lee JH
    PLoS One; 2017; 12(1):e0169540. PubMed ID: 28125606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facilitating the Evolution of Esterase Activity from a Promiscuous Enzyme (Mhg) with Catalytic Functions of Amide Hydrolysis and Carboxylic Acid Perhydrolysis by Engineering the Substrate Entrance Tunnel.
    Yan X; Wang J; Sun Y; Zhu J; Wu S
    Appl Environ Microbiol; 2016 Nov; 82(22):6748-6756. PubMed ID: 27613682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of a general base mechanism for ester hydrolysis in C-C hydrolase enzymes of the alpha/beta-hydrolase superfamily: a novel mechanism for the serine catalytic triad.
    Li JJ; Bugg TD
    Org Biomol Chem; 2007 Feb; 5(3):507-13. PubMed ID: 17252134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of carboxylesterase from Pseudomonas fluorescens, an alpha/beta hydrolase with broad substrate specificity.
    Kim KK; Song HK; Shin DH; Hwang KY; Choe S; Yoo OJ; Suh SW
    Structure; 1997 Dec; 5(12):1571-84. PubMed ID: 9438866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structures of a meta-cleavage product hydrolase from Pseudomonas fluorescens IP01 (CumD) complexed with cleavage products.
    Fushinobu S; Saku T; Hidaka M; Jun SY; Nojiri H; Yamane H; Shoun H; Omori T; Wakagi T
    Protein Sci; 2002 Sep; 11(9):2184-95. PubMed ID: 12192074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Directed evolution of an esterase from Pseudomonas fluorescens yields a mutant with excellent enantioselectivity and activity for the kinetic resolution of a chiral building block.
    Schmidt M; Hasenpusch D; Kähler M; Kirchner U; Wiggenhorn K; Langel W; Bornscheuer UT
    Chembiochem; 2006 May; 7(5):805-9. PubMed ID: 16575940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different active-site loop orientation in serine hydrolases versus acyltransferases.
    Jiang Y; Morley KL; Schrag JD; Kazlauskas RJ
    Chembiochem; 2011 Mar; 12(5):768-76. PubMed ID: 21351219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural Basis for the Strict Substrate Selectivity of the Mycobacterial Hydrolase LipW.
    McKary MG; Abendroth J; Edwards TE; Johnson RJ
    Biochemistry; 2016 Dec; 55(51):7099-7111. PubMed ID: 27936614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revised molecular basis of the promiscuous carboxylic acid perhydrolase activity in serine hydrolases.
    Yin DT; Kazlauskas RJ
    Chemistry; 2012 Jun; 18(26):8130-9. PubMed ID: 22618813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous use of in silico design and a correlated mutation network as a tool to efficiently guide enzyme engineering.
    Nobili A; Tao Y; Pavlidis IV; van den Bergh T; Joosten HJ; Tan T; Bornscheuer UT
    Chembiochem; 2015 Mar; 16(5):805-10. PubMed ID: 25711719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substituents effects on activity of kynureninase from Homo sapiens and Pseudomonas fluorescens.
    Maitrani C; Phillips RS
    Bioorg Med Chem; 2013 Aug; 21(15):4670-7. PubMed ID: 23791867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and function analysis of Pseudomonas plant cell wall hydrolases.
    Hazlewood GP; Gilbert HJ
    Prog Nucleic Acid Res Mol Biol; 1998; 61():211-41. PubMed ID: 9752722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic promiscuity in the alpha/beta-hydrolase superfamily: hydroxamic acid formation, C--C bond formation, ester and thioester hydrolysis in the C--C hydrolase family.
    Li C; Hassler M; Bugg TD
    Chembiochem; 2008 Jan; 9(1):71-6. PubMed ID: 18058773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stereospecificity of Pseudomonas fluorescens kynureninase for diastereomers of beta-methylkynurenine.
    Cyr LV; Newton MG; Phillips RS
    Bioorg Med Chem; 1999 Aug; 7(8):1497-503. PubMed ID: 10482441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring the Global Substrate Specificity of Mycobacterial Serine Hydrolases Using a Library of Fluorogenic Ester Substrates.
    Bassett B; Waibel B; White A; Hansen H; Stephens D; Koelper A; Larsen EM; Kim C; Glanzer A; Lavis LD; Hoops GC; Johnson RJ
    ACS Infect Dis; 2018 Jun; 4(6):904-911. PubMed ID: 29648787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification and some properties of intracellular esterase from Pseudomonas fluorescens.
    Nakagawa A; Tsujita T; Okuda H
    J Biochem; 1984 Apr; 95(4):1047-54. PubMed ID: 6430880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The mechanism of kynurenine hydrolysis catalyzed by kynureninase.
    Tanizawa K; Soda K
    J Biochem; 1979 Nov; 86(5):1199-209. PubMed ID: 118164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile fabrication of antibacterial and antiviral perhydrolase-polydopamine composite coatings.
    Wang LS; Xu S; Gopal S; Kim E; Kim D; Brier M; Solanki K; Dordick JS
    Sci Rep; 2021 Jun; 11(1):12410. PubMed ID: 34127732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving the catalytic efficiency of a meta-cleavage product hydrolase (CumD) from Pseudomonas fluorescens IP01.
    Jun SY; Fushinobu S; Nojiri H; Omori T; Shoun H; Wakagi T
    Biochim Biophys Acta; 2006 Jul; 1764(7):1159-66. PubMed ID: 16844437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.