BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

526 related articles for article (PubMed ID: 15803617)

  • 21. Effect of shadowing on survival of bacteria under conditions simulating the Martian atmosphere and UV radiation.
    Osman S; Peeters Z; La Duc MT; Mancinelli R; Ehrenfreund P; Venkateswaran K
    Appl Environ Microbiol; 2008 Feb; 74(4):959-70. PubMed ID: 18083857
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Long-term survival of bacterial spores in space.
    Horneck G; Bucker H; Reitz G
    Adv Space Res; 1994 Oct; 14(10):41-5. PubMed ID: 11539977
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Space microbiology.
    Horneck G; Klaus DM; Mancinelli RL
    Microbiol Mol Biol Rev; 2010 Mar; 74(1):121-56. PubMed ID: 20197502
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exposure of DNA and Bacillus subtilis spores to simulated martian environments: use of quantitative PCR (qPCR) to measure inactivation rates of DNA to function as a template molecule.
    Fajardo-Cavazos P; Schuerger AC; Nicholson WL
    Astrobiology; 2010 May; 10(4):403-11. PubMed ID: 20528195
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Surface characteristics of spacecraft components affect the aggregation of microorganisms and may lead to different survival rates of bacteria on Mars landers.
    Schuerger AC; Richards JT; Hintze PE; Kern RG
    Astrobiology; 2005 Aug; 5(4):545-59. PubMed ID: 16078871
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Photobiology in space: an experiment on Spacelab I.
    Horneck G; Bücker H; Dose K; Martens KD; Mennigmann HD; Reitz G; Requardt H; Weber P
    Orig Life; 1984; 14(1-4):825-32. PubMed ID: 6431359
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Photochemistry of Unprotected DNA and DNA inside Bacillus subtilis Spores Exposed to Simulated Martian Surface Conditions of Atmospheric Composition, Temperature, Pressure, and Solar Radiation.
    Nicholson WL; Schuerger AC; Douki T
    Astrobiology; 2018 Apr; 18(4):393-402. PubMed ID: 29589975
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Martian and extraterrestrial UV radiation environment--1. Biological and closed-loop ecosystem considerations.
    Cockell CS; Andrady AL
    Acta Astronaut; 1999 Jan; 44(1):53-62. PubMed ID: 11541762
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Response of microorganisms to a simulated Martian environment.
    Hawrylewicz EJ; Hagen CA; Ehrlich R
    Life Sci Space Res; 1965; 3():64-73. PubMed ID: 12035808
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The PROCESS experiment: amino and carboxylic acids under Mars-like surface UV radiation conditions in low-earth orbit.
    Noblet A; Stalport F; Guan YY; Poch O; Coll P; Szopa C; Cloix M; Macari F; Raulin F; Chaput D; Cottin H
    Astrobiology; 2012 May; 12(5):436-44. PubMed ID: 22680690
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Salt Tolerance and UV Protection of
    Godin PJ; Schuerger AC; Moores JE
    Astrobiology; 2021 Apr; 21(4):394-404. PubMed ID: 33237800
    [TBL] [Abstract][Full Text] [Related]  

  • 32. UVolution, a photochemistry experiment in low earth orbit: investigation of the photostability of carboxylic acids exposed to mars surface UV radiation conditions.
    Stalport F; Guan YY; Coll P; Szopa C; Macari F; Raulin F; Chaput D; Cottin H
    Astrobiology; 2010 May; 10(4):449-61. PubMed ID: 20528199
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fundamental studies concerning planetary quarantine in space.
    Koike J; Hori T; Katahira Y; Koike KA; Tanaka K; Kobayashi K; Kawasaki Y
    Adv Space Res; 1996; 18(1-2):339-44. PubMed ID: 11538982
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Isolation of rpoB mutations causing rifampicin resistance in Bacillus subtilis spores exposed to simulated Martian surface conditions.
    Perkins AE; Schuerger AC; Nicholson WL
    Astrobiology; 2008 Dec; 8(6):1159-67. PubMed ID: 19191541
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The ultraviolet environment of Mars: biological implications past, present, and future.
    Cockell CS; Catling DC; Davis WL; Snook K; Kepner RL; Lee P; McKay CP
    Icarus; 2000 Aug; 146(2):343-59. PubMed ID: 11543504
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exobiology and the effect of physical factors on micro-organisms.
    Imshenetsky AA; Abyzov SS; Voronov GT; Kuzjurina LA; Lysenko SV; Sotnikov GG; Fedorova RI
    Life Sci Space Res; 1967; 5():250-60. PubMed ID: 11973848
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Critical issues in connection with human missions to Mars: protection of and from the Martian environment.
    Horneck G; Facius R; Reitz G; Rettberg P; Baumstark-Khan C; Gerzer R
    Adv Space Res; 2003; 31(1):87-95. PubMed ID: 12577948
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Responses of Bacillus subtilis spores to space environment: results from experiments in space.
    Horneck G
    Orig Life Evol Biosph; 1993 Feb; 23(1):37-52. PubMed ID: 8433836
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biohazard potential of putative Martian organisms during missions to Mars.
    Warmflash D; Larios-Sanz M; Jones J; Fox GE; McKay DS
    Aviat Space Environ Med; 2007 Apr; 78(4 Suppl):A79-88. PubMed ID: 17511302
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    Cortesão M; Fuchs FM; Commichau FM; Eichenberger P; Schuerger AC; Nicholson WL; Setlow P; Moeller R
    Front Microbiol; 2019; 10():333. PubMed ID: 30863384
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.