BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 15803648)

  • 1. Reverse micelles in organic solvents: a medium for the biotechnological use of extreme halophilic enzymes at low salt concentration.
    Marhuenda-Egea FC; Piera-Velázquez S; Cadenas C; Cadenas E
    Archaea; 2002 Sep; 1(2):105-11. PubMed ID: 15803648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An extreme halophilic enzyme active at low salt in reversed micelles.
    Marhuenda-Egea FC; Piera-Velázquez S; Cadenas C; Cadenas E
    J Biotechnol; 2002 Feb; 93(2):159-64. PubMed ID: 11738722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stability of an extreme halophilic alkaline phosphatase from Halobacterium salinarium in non-conventional medium.
    Marhuenda-Egea FC; Piera-Velázquez S; Cadenas C; Cadenas E
    J Biotechnol; 2001 May; 87(3):255-61. PubMed ID: 11334667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased stability of malate dehydrogenase from Halobacterium salinarum at low salt concentration in reverse micelles.
    Piera-Velázquez S; Marhuenda-Egea F; Cadenas E
    Extremophiles; 2002 Oct; 6(5):407-12. PubMed ID: 12382117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic regulation of an alkaline p-nitrophenylphosphate phosphatase from Halobacterium salinarum in low water system by Mn2+ and monovalent cations.
    Marhuenda-Egea FC; Piera-Velázquez S; Cadenas C; Cadenas E
    FEMS Microbiol Lett; 2001 May; 198(2):111-5. PubMed ID: 11430399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of adaptation of an atypical alkaline p-nitrophenyl phosphatase from the archaeon Halobacterium salinarum at low-water environments.
    Marhuenda-Egea FC; Piera-Velázquez S; Cadenas C; Cadenas E
    Biotechnol Bioeng; 2002 Jun; 78(5):497-502. PubMed ID: 12115118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overexpression in a non-native halophilic host and biotechnological potential of NAD+-dependent glutamate dehydrogenase from Halobacterium salinarum strain NRC-36014.
    Munawar N; Engel PC
    Extremophiles; 2012 May; 16(3):463-76. PubMed ID: 22527040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alkaline p-nitrophenylphosphate phosphatase activity from Halobacterium halobium. Selective activation by manganese and effect of other divalent cations.
    Bonet ML; Llorca FI; Cadenas E
    Int J Biochem; 1992 May; 24(5):839-45. PubMed ID: 1317306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stabilization of halophilic malate dehydrogenase.
    Zaccai G; Cendrin F; Haik Y; Borochov N; Eisenberg H
    J Mol Biol; 1989 Aug; 208(3):491-500. PubMed ID: 2795658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular adaptation and salt stress response of Halobacterium salinarum cells revealed by neutron spectroscopy.
    Vauclare P; Marty V; Fabiani E; Martinez N; Jasnin M; Gabel F; Peters J; Zaccai G; Franzetti B
    Extremophiles; 2015 Nov; 19(6):1099-107. PubMed ID: 26376634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The principles of enzyme stabilization. VI. Catalysis by water-soluble enzymes entrapped into reversed micelles of surfactants in organic solvents.
    Martinek K; Levashov AV; Klyachko NL; Pantin VI; Berezin IV
    Biochim Biophys Acta; 1981 Jan; 657(1):277-94. PubMed ID: 7213747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of thiol groups in the reaction mechanism of Mn(2+)-activated alkaline p-nitrophenylphosphate phosphatase of the extreme halophilic archaebacterium Halobacterium halobium.
    Bonet ML; Llorca FI; Cadenas E
    Biochem Int; 1992 Dec; 28(4):633-41. PubMed ID: 1336386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and biochemical characterization of a halophilic archaeal alkaline phosphatase.
    Wende A; Johansson P; Vollrath R; Dyall-Smith M; Oesterhelt D; Grininger M
    J Mol Biol; 2010 Jul; 400(1):52-62. PubMed ID: 20438737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of a halophilic nucleoside diphosphate kinase from Halobacterium salinarum.
    Besir H; Zeth K; Bracher A; Heider U; Ishibashi M; Tokunaga M; Oesterhelt D
    FEBS Lett; 2005 Dec; 579(29):6595-600. PubMed ID: 16293253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzyme catalysis in reverse micelles.
    Orlich B; Schomäcker R
    Adv Biochem Eng Biotechnol; 2002; 75():185-208. PubMed ID: 11783840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic mechanism of Halobacterium halobium Mn(2+)-activated alkaline phosphatase.
    Bonet ML; Llorca FI; Cadenas E
    Biochem Mol Biol Int; 1994 Dec; 34(6):1109-20. PubMed ID: 7696983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactivity of trypsin in reverse micelles: pH-effects on the W0 versus enzyme activity profiles.
    Fadnavis NW; Babu RL; Deshpande A
    Biochimie; 1998 Dec; 80(12):1025-30. PubMed ID: 9924980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic properties and potential of an extracellular protease from an extreme halophile.
    Ryu K; Kim J; Dordick JS
    Enzyme Microb Technol; 1994 Apr; 16(4):266-75. PubMed ID: 7764632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic and thermodynamic characterization of protease from Halobacterium sp. SP1(1).
    Akolkar AV; Desai AJ
    Res Microbiol; 2010 Jun; 161(5):355-62. PubMed ID: 20438836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NaCl-activated nucleoside diphosphate kinase from extremely halophilic archaeon, Halobacterium salinarum, maintains native conformation without salt.
    Ishibashi M; Tokunaga H; Hiratsuka K; Yonezawa Y; Tsurumaru H; Arakawa T; Tokunaga M
    FEBS Lett; 2001 Mar; 493(2-3):134-8. PubMed ID: 11287010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.