These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 15803746)
1. Influence of the thiol position on the attachment and subsequent hybridization of thiolated DNA on gold surfaces. Wirtz R; Wälti C; Tosch P; Pepper M; Davies AG; Germishuizen WA; Middelberg AP Langmuir; 2004 Feb; 20(4):1527-30. PubMed ID: 15803746 [No Abstract] [Full Text] [Related]
2. Stable immobilization of an oligonucleotide probe on a gold substrate using tripodal thiol derivatives. Sakata T; Maruyama S; Ueda A; Otsuka H; Miyahara Y Langmuir; 2007 Feb; 23(5):2269-72. PubMed ID: 17269799 [TBL] [Abstract][Full Text] [Related]
3. Synthesis of oligonucleotides carrying thiol groups using a simple reagent derived from threoninol. Pérez-Rentero S; Grijalvo S; Ferreira R; Eritja R Molecules; 2012 Aug; 17(9):10026-45. PubMed ID: 22922274 [TBL] [Abstract][Full Text] [Related]
4. Characterization of DNA immobilization and subsequent hybridization using in situ quartz crystal microbalance, fluorescence spectroscopy, and surface plasmon resonance. Cho YK; Kim S; Kim YA; Lim HK; Lee K; Yoon D; Lim G; Pak YE; Ha TH; Kim K J Colloid Interface Sci; 2004 Oct; 278(1):44-52. PubMed ID: 15313636 [TBL] [Abstract][Full Text] [Related]
5. Comparison of different supramolecular architectures for oligonucleotide biosensing. Mir M; Alvarez M; Azzaroni O; Knoll W Langmuir; 2008 Nov; 24(22):13001-6. PubMed ID: 18947242 [TBL] [Abstract][Full Text] [Related]
6. Gold-silver and silver-silver nanoparticle constructs based on DNA hybridization of thiol- and amino-functionalized oligonucleotides. Steinbrück A; Csaki A; Ritter K; Leich M; Köhler JM; Fritzsche W J Biophotonics; 2008 May; 1(2):104-13. PubMed ID: 19343642 [TBL] [Abstract][Full Text] [Related]
7. Fast, single-step, and surfactant-free oligonucleotide modification of gold nanoparticles using DNA with a positively charged tail. Gill R; Göeken K; Subramaniam V Chem Commun (Camb); 2013 Dec; 49(97):11400-2. PubMed ID: 24166001 [TBL] [Abstract][Full Text] [Related]
8. Time-resolved optical sensing of oligonucleotide hybridization via Au colloidal nanoparticles. Liu GL; Rodriguez VB; Lee LP J Nanosci Nanotechnol; 2005 Nov; 5(11):1933-7. PubMed ID: 16433435 [TBL] [Abstract][Full Text] [Related]
9. Influence of amine and thiol modifications at the 3' ends of single stranded DNA molecules on their adsorption on gold surface and the efficiency of their hybridization. Jaworska A; Jablonska A; Wilanowski T; Palys B; Sek S; Kudelski A Spectrochim Acta A Mol Biomol Spectrosc; 2018 Oct; 203():31-39. PubMed ID: 29857258 [TBL] [Abstract][Full Text] [Related]
10. Hybridization of oligonucleotide-modified silver and gold nanoparticles in aqueous dispersions and on gold films. Tokareva I; Hutter E J Am Chem Soc; 2004 Dec; 126(48):15784-9. PubMed ID: 15571402 [TBL] [Abstract][Full Text] [Related]
12. Surface plasmon resonance spectroscopy and quartz crystal microbalance study of streptavidin film structure effects on biotinylated DNA assembly and target DNA hybridization. Su X; Wu YJ; Robelek R; Knoll W Langmuir; 2005 Jan; 21(1):348-53. PubMed ID: 15620323 [TBL] [Abstract][Full Text] [Related]
13. Selective release of multiple DNA oligonucleotides from gold nanorods. Wijaya A; Schaffer SB; Pallares IG; Hamad-Schifferli K ACS Nano; 2009 Jan; 3(1):80-6. PubMed ID: 19206252 [TBL] [Abstract][Full Text] [Related]
14. Fast assembly of non-thiolated DNA on gold surface at lower pH. Jiang H; Materon EM; Sotomayor Mdel P; Liu J J Colloid Interface Sci; 2013 Dec; 411():92-7. PubMed ID: 24050641 [TBL] [Abstract][Full Text] [Related]
15. Thermostable DNA immobilization and temperature effects on surface hybridization. Ge D; Wang X; Williams K; Levicky R Langmuir; 2012 Jun; 28(22):8446-55. PubMed ID: 22578171 [TBL] [Abstract][Full Text] [Related]
16. Chronocoulometric aptamer based assay for staphylococcal enterotoxin B by target-triggered assembly of nanostructured dendritic nucleic acids on a gold electrode. Chen X; Liu Y; Lu Y; Xiong X; Li Y; Liu Y; Xiong X Mikrochim Acta; 2019 Jan; 186(2):109. PubMed ID: 30637509 [TBL] [Abstract][Full Text] [Related]
17. Controlling the number and positions of oligonucleotides on gold nanoparticle surfaces. Suzuki K; Hosokawa K; Maeda M J Am Chem Soc; 2009 Jun; 131(22):7518-9. PubMed ID: 19445511 [TBL] [Abstract][Full Text] [Related]
18. Facile and rapid manipulation of DNA surface density on gold nanoparticles using mononucleotide-mediated conjugation. Zhao W; Hsing IM Chem Commun (Camb); 2010 Feb; 46(8):1314-6. PubMed ID: 20449288 [TBL] [Abstract][Full Text] [Related]
19. Hybridization behavior of mixed DNA/alkylthiol monolayers on gold: characterization by surface plasmon resonance and 32P radiometric assay. Gong P; Lee CY; Gamble LJ; Castner DG; Grainger DW Anal Chem; 2006 May; 78(10):3326-34. PubMed ID: 16689533 [TBL] [Abstract][Full Text] [Related]
20. Dynamics of electron transport by elastic bending of short DNA duplexes. Experimental study and quantitative modeling of the cyclic voltammetric behavior of 3'-ferrocenyl DNA end-grafted on gold. Anne A; Demaille C J Am Chem Soc; 2006 Jan; 128(2):542-57. PubMed ID: 16402842 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]