These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 1580406)

  • 1. Effect of the deposition potential on the voltammetric determination of complexing ligand concentrations in sea-water.
    van den Berg CM
    Analyst; 1992 Mar; 117(3):589-93. PubMed ID: 1580406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Copper (II) complexation in northern California rice field waters: an investigation using differential pulse anodic and cathodic stripping voltammetry.
    Witter AE; Mabury SA; Jones AD
    Sci Total Environ; 1998 Mar; 212(1):21-37. PubMed ID: 9525045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetically inert Cu in coastal waters.
    Kogut MB; Voelker BM
    Environ Sci Technol; 2003 Feb; 37(3):509-18. PubMed ID: 12630466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of a modified, high-sensitivity, anodic stripping voltammetry method for determination of zinc speciation in the North Atlantic Ocean.
    Jakuba RW; Moffett JW; Saito MA
    Anal Chim Acta; 2008 May; 614(2):143-52. PubMed ID: 18420044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anodic stripping voltammetry measures copper bioavailability for sea urchin larvae in the presence of fulvic acids.
    Lorenzo JI; Nieto O; Beiras R
    Environ Toxicol Chem; 2006 Jan; 25(1):36-44. PubMed ID: 16494222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organic Copper Speciation by Anodic Stripping Voltammetry in Estuarine Waters With High Dissolved Organic Matter.
    Pađan J; Marcinek S; Cindrić AM; Santinelli C; Retelletti Brogi S; Radakovitch O; Garnier C; Omanović D
    Front Chem; 2020; 8():628749. PubMed ID: 33634075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of copper speciation in estuarine water measured using analytical voltammetry and supported liquid membrane techniques.
    Ndungu K; Hurst MP; Bruland KW
    Environ Sci Technol; 2005 May; 39(9):3166-75. PubMed ID: 15926567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Copper speciation by competing ligand exchange method using differential pulse anodic stripping voltammetry with ethylenediaminetetraacetic acid (EDTA) as competing ligand.
    Wang R; Chakrabarti CL
    Anal Chim Acta; 2008 May; 614(2):153-60. PubMed ID: 18420045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of accuracy and precision in speciation analysis by competitive ligand equilibration-cathodic stripping voltammetry (CLE-CSV) and application to Antarctic samples.
    Monticelli D; Dossi C; Castelletti A
    Anal Chim Acta; 2010 Aug; 675(2):116-24. PubMed ID: 20800722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Significance of data treatment and experimental setup on the determination of copper complexing parameters by anodic stripping voltammetry.
    Omanović D; Garnier C; Louis Y; Lenoble V; Mounier S; Pizeta I
    Anal Chim Acta; 2010 Apr; 664(2):136-43. PubMed ID: 20363395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Apparatus for in situ monitoring of copper in coastal waters.
    Chapman CS; Cooke RD; Salaün P; van den Berg CM
    J Environ Monit; 2012 Oct; 14(10):2793-802. PubMed ID: 22983404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cathodic pseudopolarography: a new tool for the identification and quantification of cysteine, cystine and other low molecular weight thiols in seawater.
    Laglera LM; Downes J; Tovar-Sánchez A; Monticelli D
    Anal Chim Acta; 2014 Jul; 836():24-33. PubMed ID: 24974867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trace element speciation by anodic stripping voltammetry.
    Florence TM
    Analyst; 1992 Mar; 117(3):551-3. PubMed ID: 1580400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strong copper-binding behavior of terrestrial humic substances in seawater.
    Kogut MB; Voelker BM
    Environ Sci Technol; 2001 Mar; 35(6):1149-56. PubMed ID: 11347927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pseudopolarography of copper complexes in seawater using a vibrating gold microwire electrode.
    Gibbon-Walsh K; Salaün P; van den Berg CM
    J Phys Chem A; 2012 Jun; 116(25):6609-20. PubMed ID: 22468628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical approach to speciation and estimation of parameters used in modeling trace metal bioavailability.
    Sander SG; Hunter KA; Harms H; Wells M
    Environ Sci Technol; 2011 Aug; 45(15):6388-95. PubMed ID: 21751821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal-organic complexation in the marine environment.
    Luther GW; Rozan TF; Witter A; Lewis B
    Geochem Trans; 2001 Sep; 2(1):65. PubMed ID: 16759421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trace metals species in sea-water-I: removal of trace metals from sea-water by a chelating resin.
    Florence TM; Batley GE
    Talanta; 1976 Mar; 23(3):179-86. PubMed ID: 18961831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iron organic speciation determination in rainwater using cathodic stripping voltammetry.
    Cheize M; Sarthou G; Croot PL; Bucciarelli E; Baudoux AC; Baker AR
    Anal Chim Acta; 2012 Jul; 736():45-54. PubMed ID: 22769004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heavy metal (Zn and Cu) complexation and molecular size distribution in wastewater treatment plant effluent.
    Chaminda GG; Nakajima F; Furumai H
    Water Sci Technol; 2008; 58(6):1207-13. PubMed ID: 18845858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.